DataID: towards semantically rich metadata for complex datasets

Martin Brümmer, C. Baron, I. Ermilov, M. Freudenberg, D. Kontokostas, Sebastian Hellmann
{"title":"DataID: towards semantically rich metadata for complex datasets","authors":"Martin Brümmer, C. Baron, I. Ermilov, M. Freudenberg, D. Kontokostas, Sebastian Hellmann","doi":"10.1145/2660517.2660538","DOIUrl":null,"url":null,"abstract":"The constantly growing amount of Linked Open Data (LOD) datasets constitutes the need for rich metadata descriptions, enabling users to discover, understand and process the available data. This metadata is often created, maintained and stored in diverse data repositories featuring disparate data models that are often unable to provide the metadata necessary to automatically process the datasets described. This paper proposes DataID, a best-practice for LOD dataset descriptions which utilize RDF files hosted together with the datasets, under the same domain. We are describing the data model, which is based on the widely used DCAT and VoID vocabularies, as well as supporting tools to create and publish DataIDs and use cases that show the benefits of providing semantically rich metadata for complex datasets. As a proof of concept, we generated a DataID for the DBpedia dataset, which we will present in the paper.","PeriodicalId":344435,"journal":{"name":"Joint Conference on Lexical and Computational Semantics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Conference on Lexical and Computational Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2660517.2660538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

The constantly growing amount of Linked Open Data (LOD) datasets constitutes the need for rich metadata descriptions, enabling users to discover, understand and process the available data. This metadata is often created, maintained and stored in diverse data repositories featuring disparate data models that are often unable to provide the metadata necessary to automatically process the datasets described. This paper proposes DataID, a best-practice for LOD dataset descriptions which utilize RDF files hosted together with the datasets, under the same domain. We are describing the data model, which is based on the widely used DCAT and VoID vocabularies, as well as supporting tools to create and publish DataIDs and use cases that show the benefits of providing semantically rich metadata for complex datasets. As a proof of concept, we generated a DataID for the DBpedia dataset, which we will present in the paper.
DataID:为复杂数据集提供语义丰富的元数据
链接开放数据(LOD)数据集的数量不断增长,形成了对丰富元数据描述的需求,使用户能够发现、理解和处理可用数据。这些元数据通常创建、维护和存储在具有不同数据模型的不同数据存储库中,这些数据模型通常无法提供自动处理所描述的数据集所需的元数据。本文提出了DataID,这是LOD数据集描述的最佳实践,它利用同一域下与数据集一起托管的RDF文件。我们将描述基于广泛使用的DCAT和VoID词汇表的数据模型,以及用于创建和发布DataIDs的支持工具和用例,这些工具和用例显示了为复杂数据集提供语义丰富的元数据的好处。作为概念证明,我们为DBpedia数据集生成了一个DataID,我们将在本文中介绍它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信