Hysteresis cellular neural networks for solving combinatorial optimization problems

T. Nakaguchi, K. Omiya, M. Tanaka
{"title":"Hysteresis cellular neural networks for solving combinatorial optimization problems","authors":"T. Nakaguchi, K. Omiya, M. Tanaka","doi":"10.1109/CNNA.2002.1035093","DOIUrl":null,"url":null,"abstract":"Hysteresis cellular neural networks are one of artificial neural networks which work effectively against large scale problems. In the previous work, remarkable methods have never been developed to overcome the defects of hysteresis cellular neural networks. We then propose a novel architecture for combinatorial optimization problems to overcome them. Experimental results indicate the efficiency of the architecture.","PeriodicalId":387716,"journal":{"name":"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2002.1035093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hysteresis cellular neural networks are one of artificial neural networks which work effectively against large scale problems. In the previous work, remarkable methods have never been developed to overcome the defects of hysteresis cellular neural networks. We then propose a novel architecture for combinatorial optimization problems to overcome them. Experimental results indicate the efficiency of the architecture.
求解组合优化问题的滞后细胞神经网络
滞后细胞神经网络是一种能有效解决大规模问题的人工神经网络。在以往的工作中,还没有开发出显著的方法来克服滞后细胞神经网络的缺陷。然后,我们提出了一种新的组合优化问题架构来克服它们。实验结果表明了该结构的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信