{"title":"Achromatic polarization rotator based on splay-twist liquid crystal","authors":"Tsung-Hsien Lin, Chun-Wei Chen, Duan-Yi Guo, Li-Min Chang","doi":"10.1117/12.2596414","DOIUrl":null,"url":null,"abstract":"An electrically tunable achromatic polarization rotator has been developed based on the hybrid splay-twist (HST) liquid crystal. The proposed polarization rotator is advantageous over the conventional ones owing to the thin thickness (sub-100μm), continuous angular rotation, and achromatic operation across the entire visible spectrum. The tuning range of the polarization rotator is up to 90° via a simple electric field application; meanwhile, the degree of linear polarization (DOLP) remains. The rotation angle can be expanded to 180° by a tandem-cell geometry. The work will offer possibilities in the design of various optical systems and spatially polarization multiplexing elements.","PeriodicalId":145723,"journal":{"name":"Liquid Crystals XXV","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liquid Crystals XXV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2596414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An electrically tunable achromatic polarization rotator has been developed based on the hybrid splay-twist (HST) liquid crystal. The proposed polarization rotator is advantageous over the conventional ones owing to the thin thickness (sub-100μm), continuous angular rotation, and achromatic operation across the entire visible spectrum. The tuning range of the polarization rotator is up to 90° via a simple electric field application; meanwhile, the degree of linear polarization (DOLP) remains. The rotation angle can be expanded to 180° by a tandem-cell geometry. The work will offer possibilities in the design of various optical systems and spatially polarization multiplexing elements.