{"title":"A Fabry-Perot optical fiber force sensor based on intensity modulation for needle tip force sensing","authors":"Z. Mo, Weiliang Xu, N. Broderick","doi":"10.1109/ICARA.2015.7081177","DOIUrl":null,"url":null,"abstract":"The force feedback absence in minimally invasive surgeries (MIS) is a chronic problem. The main obstacle is the intensive magnetic resonance (MR) influence on traditional electronic signals. This paper proposes a miniature and MR compatible optical force sensor based on Fabry-Perot interference (FPI) principle and interferometric-intensity modulation method. The FPI sensor, with 400μm outer diameter, is embedded in the tip of a rigid puncture needle with 1.0mm inner diameter. The sensor is simulated and fabricated, followed by signal processing using Fourier and wavelet transform analysis. Calibration results at 20 °C show that the force sensing range and resolution are 0-5N and 0.1N, respectively. Silicon rubber skin phantom insertion experiments suggest that the FPI sensor could identify clearly the type of tissues during the insertion and extraction procedure.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The force feedback absence in minimally invasive surgeries (MIS) is a chronic problem. The main obstacle is the intensive magnetic resonance (MR) influence on traditional electronic signals. This paper proposes a miniature and MR compatible optical force sensor based on Fabry-Perot interference (FPI) principle and interferometric-intensity modulation method. The FPI sensor, with 400μm outer diameter, is embedded in the tip of a rigid puncture needle with 1.0mm inner diameter. The sensor is simulated and fabricated, followed by signal processing using Fourier and wavelet transform analysis. Calibration results at 20 °C show that the force sensing range and resolution are 0-5N and 0.1N, respectively. Silicon rubber skin phantom insertion experiments suggest that the FPI sensor could identify clearly the type of tissues during the insertion and extraction procedure.