Richard M. Yoo, Han Lee, K. Chow, Hsien-Hsin S. Lee
{"title":"Constructing a Non-Linear Model with Neural Networks for Workload Characterization","authors":"Richard M. Yoo, Han Lee, K. Chow, Hsien-Hsin S. Lee","doi":"10.1109/IISWC.2006.302739","DOIUrl":null,"url":null,"abstract":"Workload characterization involves the understanding of the relationship between workload configurations and performance characteristics. To better assess the complexity of workload behavior, a model based approach is needed. Nevertheless, several configuration parameters and performance characteristics exhibit non-linear relationships that prohibit the development of an accurate application behavior model. In this paper, we propose a non-linear model based on an artificial neural network to explore such complex relationship. We achieved high accuracy and good predictability between configurations and performance characteristics when applying such a model to a 3-tier setup with response time restrictions. As shown by our work, a non-linear model and neural networks can increase the understandings of complex multi-tiered workloads, which further provide useful insights for performance engineers to tune their workloads for improving performance","PeriodicalId":222041,"journal":{"name":"2006 IEEE International Symposium on Workload Characterization","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Workload Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2006.302739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
Workload characterization involves the understanding of the relationship between workload configurations and performance characteristics. To better assess the complexity of workload behavior, a model based approach is needed. Nevertheless, several configuration parameters and performance characteristics exhibit non-linear relationships that prohibit the development of an accurate application behavior model. In this paper, we propose a non-linear model based on an artificial neural network to explore such complex relationship. We achieved high accuracy and good predictability between configurations and performance characteristics when applying such a model to a 3-tier setup with response time restrictions. As shown by our work, a non-linear model and neural networks can increase the understandings of complex multi-tiered workloads, which further provide useful insights for performance engineers to tune their workloads for improving performance