Optimal experiment design techniques integrated with time-series segmentation

L. Dobos, Z. Bankó, J. Abonyi
{"title":"Optimal experiment design techniques integrated with time-series segmentation","authors":"L. Dobos, Z. Bankó, J. Abonyi","doi":"10.1109/SAMI.2010.5423737","DOIUrl":null,"url":null,"abstract":"Process models play important role in computer aided process engineering. Although the structure of these models is a priori known, model parameters should be estimated based on experiments. The accuracy of the estimated parameters largely depends on the information content of the experimental data presented to the parameter identification algorithm. Optimal Experiment Design (OED) can maximize the confidence on the model parameters. Considering that OED is an iterative process, it may happen that the designed experiment contains segments which are not or less useful for parameter identification. Using the tools of the OED there is the opportunity to qualify the segments of the time-series of different data sets. After the segmentation, it will be possible to choose the most appropriate segments for identification of each parameter, i.e. to determine the parameters as accurate as possible.","PeriodicalId":306051,"journal":{"name":"2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2010.5423737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Process models play important role in computer aided process engineering. Although the structure of these models is a priori known, model parameters should be estimated based on experiments. The accuracy of the estimated parameters largely depends on the information content of the experimental data presented to the parameter identification algorithm. Optimal Experiment Design (OED) can maximize the confidence on the model parameters. Considering that OED is an iterative process, it may happen that the designed experiment contains segments which are not or less useful for parameter identification. Using the tools of the OED there is the opportunity to qualify the segments of the time-series of different data sets. After the segmentation, it will be possible to choose the most appropriate segments for identification of each parameter, i.e. to determine the parameters as accurate as possible.
结合时间序列分割的优化实验设计技术
过程模型在计算机辅助过程工程中起着重要的作用。虽然这些模型的结构是先验已知的,但模型参数需要根据实验来估计。参数估计的准确性很大程度上取决于提供给参数识别算法的实验数据的信息量。优化实验设计(OED)可以最大限度地提高模型参数的置信度。考虑到OED是一个迭代过程,设计的实验可能会包含对参数识别无用或不太有用的片段。使用OED的工具,就有机会对不同数据集的时间序列片段进行限定。分割后,就可以选择最合适的分割段来识别每个参数,即尽可能准确地确定参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信