Academic Success Prediction based on Important Student Data Selected via Multi-objective Evolutionary Computation

N. Kondo, T. Matsuda, Yuji Hayashi, Hideya Matsukawa, Mio Tsubakimoto, Yuki Watanabe, Shinji Tateishi, Hideaki Yamashita
{"title":"Academic Success Prediction based on Important Student Data Selected via Multi-objective Evolutionary Computation","authors":"N. Kondo, T. Matsuda, Yuji Hayashi, Hideya Matsukawa, Mio Tsubakimoto, Yuki Watanabe, Shinji Tateishi, Hideaki Yamashita","doi":"10.1109/IIAI-AAI50415.2020.00082","DOIUrl":null,"url":null,"abstract":"This paper proposes an academic success prediction modeling approach that can be used for student advising, in which a multi-objective evolutionary computation approach is applied that automatically selects important explanatory variables suitable to predict academic success and construct multiple predictive models based on machine learning. Numerical experiments using actual student data suggest that it is possible to construct predictive models in considering the trade-off of prediction performance and model interpretability.","PeriodicalId":188870,"journal":{"name":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI50415.2020.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an academic success prediction modeling approach that can be used for student advising, in which a multi-objective evolutionary computation approach is applied that automatically selects important explanatory variables suitable to predict academic success and construct multiple predictive models based on machine learning. Numerical experiments using actual student data suggest that it is possible to construct predictive models in considering the trade-off of prediction performance and model interpretability.
基于多目标进化计算的重要学生数据学习成绩预测
本文提出了一种可用于学生指导的学业成功预测建模方法,该方法采用多目标进化计算方法,自动选择适合预测学业成功的重要解释变量,并基于机器学习构建多个预测模型。使用实际学生数据的数值实验表明,在考虑预测性能和模型可解释性之间的权衡的情况下,构建预测模型是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信