Multi-scale Fusion and Channel Weighted CNN for Acoustic Scene Classification

Liping Yang, Xinxing Chen, Lianjie Tao, Xiaohua Gu
{"title":"Multi-scale Fusion and Channel Weighted CNN for Acoustic Scene Classification","authors":"Liping Yang, Xinxing Chen, Lianjie Tao, Xiaohua Gu","doi":"10.1145/3372806.3372809","DOIUrl":null,"url":null,"abstract":"Ensemble semantic features are useful for acoustic scene classification. In this paper, we proposed a multi-scale fusion and channel weighted CNN framework. The framework consists of two stages: the multi-scale feature fusion and channel weighting stages. The multi-scale feature fusion stage extracts hierarchy semantic feature maps using a CNN with simplified Xception architecture and then integrates multi-scale semantic features through a top-down pathway. The channel weighting stage squeezes feature maps into a channel descriptor and then transforms it into a set of channel weighting factors to reinforce the importance of each channel for acoustic scene classification. Experimental results on DCASE2018 acoustic scene classification subtask A and subtask B demonstrate the performances of the proposed framework.","PeriodicalId":340004,"journal":{"name":"International Conference on Signal Processing and Machine Learning","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372806.3372809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Ensemble semantic features are useful for acoustic scene classification. In this paper, we proposed a multi-scale fusion and channel weighted CNN framework. The framework consists of two stages: the multi-scale feature fusion and channel weighting stages. The multi-scale feature fusion stage extracts hierarchy semantic feature maps using a CNN with simplified Xception architecture and then integrates multi-scale semantic features through a top-down pathway. The channel weighting stage squeezes feature maps into a channel descriptor and then transforms it into a set of channel weighting factors to reinforce the importance of each channel for acoustic scene classification. Experimental results on DCASE2018 acoustic scene classification subtask A and subtask B demonstrate the performances of the proposed framework.
基于多尺度融合和信道加权CNN的声场景分类
集成语义特征对声学场景分类非常有用。本文提出了一种多尺度融合和信道加权的CNN框架。该框架包括两个阶段:多尺度特征融合阶段和通道加权阶段。多尺度特征融合阶段使用简化Xception架构的CNN提取层次语义特征映射,然后通过自顶向下的路径整合多尺度语义特征。通道加权阶段将特征映射压缩为通道描述符,然后将其转换为一组通道加权因子,以增强每个通道对声学场景分类的重要性。在DCASE2018声学场景分类子任务A和子任务B上的实验结果验证了该框架的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信