A Sequential Radial Basis Function Neural Network Modeling Method Based on Partial Cross Validation Error Estimation

Wen Yao, Xiaoqian Chen
{"title":"A Sequential Radial Basis Function Neural Network Modeling Method Based on Partial Cross Validation Error Estimation","authors":"Wen Yao, Xiaoqian Chen","doi":"10.1109/ICNC.2009.352","DOIUrl":null,"url":null,"abstract":"Radial Basis Function Neural Network (RBFNN) is widely used in approximating high nonlinear functions. The network complexity and approximation accuracy are directly dominated by the training data. So how to sample data and obtain target system information in design space effectively is one of the key issues in improving RBFNN approximation capability. In this paper, a sequential RBFNN modeling method based on partial cross validation error estimation (PCVEE) criterion is proposed. This method can utilize the sample data as the validation data to test the approximation model accuracy, and expand the sample set purposively and refine the model sequentially according to the error estimation, so as to improve the approximation accuracy effectively. Two mathematical examples are tested to verify the efficiency of this method.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Radial Basis Function Neural Network (RBFNN) is widely used in approximating high nonlinear functions. The network complexity and approximation accuracy are directly dominated by the training data. So how to sample data and obtain target system information in design space effectively is one of the key issues in improving RBFNN approximation capability. In this paper, a sequential RBFNN modeling method based on partial cross validation error estimation (PCVEE) criterion is proposed. This method can utilize the sample data as the validation data to test the approximation model accuracy, and expand the sample set purposively and refine the model sequentially according to the error estimation, so as to improve the approximation accuracy effectively. Two mathematical examples are tested to verify the efficiency of this method.
基于部分交叉验证误差估计的序列径向基函数神经网络建模方法
径向基函数神经网络(RBFNN)广泛应用于高非线性函数的逼近。训练数据直接决定了网络的复杂度和逼近精度。因此,如何有效地在设计空间中对数据进行采样并获取目标系统信息是提高RBFNN逼近能力的关键问题之一。提出了一种基于部分交叉验证误差估计(PCVEE)准则的序列RBFNN建模方法。该方法可以利用样本数据作为验证数据来检验逼近模型的精度,并根据误差估计有目的地扩大样本集,对模型进行逐级细化,从而有效地提高逼近精度。通过两个算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信