Optimal function approximation using fuzzy rules

D. Lisin, M. Gennert
{"title":"Optimal function approximation using fuzzy rules","authors":"D. Lisin, M. Gennert","doi":"10.1109/NAFIPS.1999.781679","DOIUrl":null,"url":null,"abstract":"It has been constructively proven by Kosko (1994) that fuzzy systems are universal approximators. However, the proof does not provide an algorithm to build a fuzzy system that approximates an analytically defined function to an arbitrary precision with a minimum number of fuzzy rules. We describe a method that utilizes the information contained in the analytic definition of a function, such as its first and second derivatives, to build a fuzzy system that approximates it.","PeriodicalId":335957,"journal":{"name":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.1999.781679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

It has been constructively proven by Kosko (1994) that fuzzy systems are universal approximators. However, the proof does not provide an algorithm to build a fuzzy system that approximates an analytically defined function to an arbitrary precision with a minimum number of fuzzy rules. We describe a method that utilizes the information contained in the analytic definition of a function, such as its first and second derivatives, to build a fuzzy system that approximates it.
使用模糊规则的最优函数逼近
Kosko(1994)建设性地证明了模糊系统是全称逼近器。然而,该证明并没有提供一种算法来构建一个模糊系统,该系统可以用最小数量的模糊规则将解析定义的函数逼近到任意精度。我们描述了一种方法,利用函数的解析定义中包含的信息,如它的一阶导数和二阶导数,来建立一个近似它的模糊系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信