Convolutional neural network-based infrared image super resolution under low light environment

Tae Young Han, Yong Jun Kim, B. Song
{"title":"Convolutional neural network-based infrared image super resolution under low light environment","authors":"Tae Young Han, Yong Jun Kim, B. Song","doi":"10.23919/EUSIPCO.2017.8081318","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNN) have been successfully applied to visible image super-resolution (SR) methods. In this paper, for up-scaling near-infrared (NIR) image under low light environment, we propose a CNN-based SR algorithm using corresponding visible image. Our algorithm firstly extracts high-frequency (HF) components from low-resolution (LR) NIR image and its corresponding high-resolution (HR) visible image, and then takes them as the multiple inputs of the CNN. Next, the CNN outputs HR HF component of the input NIR image. Finally, HR NIR image is synthesized by adding the HR HF component to the up-scaled LR NIR image. Simulation results show that the proposed algorithm outperforms the state-of-the-art methods in terms of qualitative as well as quantitative metrics.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Convolutional neural networks (CNN) have been successfully applied to visible image super-resolution (SR) methods. In this paper, for up-scaling near-infrared (NIR) image under low light environment, we propose a CNN-based SR algorithm using corresponding visible image. Our algorithm firstly extracts high-frequency (HF) components from low-resolution (LR) NIR image and its corresponding high-resolution (HR) visible image, and then takes them as the multiple inputs of the CNN. Next, the CNN outputs HR HF component of the input NIR image. Finally, HR NIR image is synthesized by adding the HR HF component to the up-scaled LR NIR image. Simulation results show that the proposed algorithm outperforms the state-of-the-art methods in terms of qualitative as well as quantitative metrics.
基于卷积神经网络的低光环境下红外图像超分辨率研究
卷积神经网络(CNN)已成功应用于可见图像超分辨率(SR)方法。本文针对低光环境下近红外图像的上尺度,提出了一种基于cnn的可见光图像SR算法。我们的算法首先从低分辨率(LR)近红外图像及其对应的高分辨率(HR)可见光图像中提取高频(HF)分量,然后将其作为CNN的多重输入。接下来,CNN输出输入近红外图像的HR HF分量。最后,将HR HF分量加入到放大后的LR近红外图像中,合成HR近红外图像。仿真结果表明,该算法在定性和定量指标方面都优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信