FPGA Fastfood - A High Speed Systolic Implementation of a Large Scale Online Kernel Method

Sean Fox, D. Boland, P. Leong
{"title":"FPGA Fastfood - A High Speed Systolic Implementation of a Large Scale Online Kernel Method","authors":"Sean Fox, D. Boland, P. Leong","doi":"10.1145/3174243.3174271","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a systolic Field Programmable Gate Array (FPGA) implementation of the Fastfood algorithm that is optimised to run at a high frequency. The Fastfood algorithm supports online learning for large scale kernel methods. Empirical results show that 500 MHz clock rates can be sustained for an architecture that can solve problems with input dimensions that are $10^3$ times larger than previously reported. Unlike many recent deep learning publications, this design implements both training and prediction. This enables the use of kernel methods in applications requiring a rare combination of capacity, adaption and speed.","PeriodicalId":164936,"journal":{"name":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3174243.3174271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we describe a systolic Field Programmable Gate Array (FPGA) implementation of the Fastfood algorithm that is optimised to run at a high frequency. The Fastfood algorithm supports online learning for large scale kernel methods. Empirical results show that 500 MHz clock rates can be sustained for an architecture that can solve problems with input dimensions that are $10^3$ times larger than previously reported. Unlike many recent deep learning publications, this design implements both training and prediction. This enables the use of kernel methods in applications requiring a rare combination of capacity, adaption and speed.
FPGA Fastfood -一种大规模在线核方法的高速收缩实现
在本文中,我们描述了一种收缩现场可编程门阵列(FPGA)的Fastfood算法的实现,该算法被优化为在高频下运行。Fastfood算法支持大规模核方法的在线学习。经验结果表明,对于可以解决输入尺寸比先前报道的大10^3倍的问题的架构,可以维持500 MHz时钟速率。与最近的许多深度学习出版物不同,该设计同时实现了训练和预测。这使得在需要容量、适应性和速度的罕见组合的应用程序中使用内核方法成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信