On the Monte Carlo Boolean decision tree complexity of read-once formulae

M. Santha
{"title":"On the Monte Carlo Boolean decision tree complexity of read-once formulae","authors":"M. Santha","doi":"10.1109/SCT.1991.160259","DOIUrl":null,"url":null,"abstract":"In the Boolean decision tree model there is at least a linear gap between the Monte Carlo and the Las Vegas complexity of a function depending on the error probability. The author proves for a large class of read-once formulae that this trivial speed-up is the best that a Monte Carlo algorithm can achieve. For every formula F belonging to that class it is shown that the Monte Carlo complexity of F with two-sided error p is (1-2p)R(F), and with one-sided error p is (1-p)R(F), where R(F) denotes the Las Vegas complexity of F. The result follows from a general lower bound that is derived on the Monte Carlo complexity of these formulae.<<ETX>>","PeriodicalId":158682,"journal":{"name":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1991.160259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

In the Boolean decision tree model there is at least a linear gap between the Monte Carlo and the Las Vegas complexity of a function depending on the error probability. The author proves for a large class of read-once formulae that this trivial speed-up is the best that a Monte Carlo algorithm can achieve. For every formula F belonging to that class it is shown that the Monte Carlo complexity of F with two-sided error p is (1-2p)R(F), and with one-sided error p is (1-p)R(F), where R(F) denotes the Las Vegas complexity of F. The result follows from a general lower bound that is derived on the Monte Carlo complexity of these formulae.<>
关于蒙特卡罗布尔决策树一次读公式的复杂度
在布尔决策树模型中,根据错误概率,函数的蒙特卡罗复杂度和拉斯维加斯复杂度之间至少存在线性差距。对于大量的一次读取公式,作者证明了这种微不足道的加速是蒙特卡罗算法所能达到的最佳速度。对于属于该类的每个公式F,证明了具有双面误差p的F的蒙特卡罗复杂度为(1-2p)R(F),具有单面误差p的F的蒙特卡罗复杂度为(1-p)R(F),其中R(F)表示F的拉斯维加斯复杂度。结果来自于这些公式的蒙特卡罗复杂度的一般下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信