Generation of Statistical Scenarios of Short-term Wind Power Production

P. Pinson, Bernd Nielsen George Klockl, Henrik Aalborg
{"title":"Generation of Statistical Scenarios of Short-term Wind Power Production","authors":"P. Pinson, Bernd Nielsen George Klockl, Henrik Aalborg","doi":"10.1109/PCT.2007.4538366","DOIUrl":null,"url":null,"abstract":"Short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with a paramount information on the uncertainty of expected wind generation. Whatever the type of these probabilistic forecasts, they are produced on a per horizon basis, and hence do not inform on the development of the forecast uncertainty through forecast series. This issue is addressed here by describing a method that permits to generate statistical scenarios of wind generation that accounts for the interdependence structure of prediction errors, in plus of respecting predictive distributions of wind generation. The approach is evaluated on the test case of a multi-MW wind farm over a period of more than two years. Its interest for a large range of applications is discussed.","PeriodicalId":356805,"journal":{"name":"2007 IEEE Lausanne Power Tech","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Lausanne Power Tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCT.2007.4538366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with a paramount information on the uncertainty of expected wind generation. Whatever the type of these probabilistic forecasts, they are produced on a per horizon basis, and hence do not inform on the development of the forecast uncertainty through forecast series. This issue is addressed here by describing a method that permits to generate statistical scenarios of wind generation that accounts for the interdependence structure of prediction errors, in plus of respecting predictive distributions of wind generation. The approach is evaluated on the test case of a multi-MW wind farm over a period of more than two years. Its interest for a large range of applications is discussed.
短期风力发电统计情景的生成
短期(最多2-3天)风电概率预测为预测用户提供了有关预期风力发电不确定性的重要信息。无论这些概率预测的类型是什么,它们都是在每个水平面的基础上产生的,因此不能通过预测系列来说明预测不确定性的发展。这里通过描述一种方法来解决这个问题,该方法允许生成风力发电的统计情景,该情景考虑到预测误差的相互依赖结构,并尊重风力发电的预测分布。该方法在一个多兆瓦风电场两年多的测试案例中进行了评估。讨论了其广泛应用的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信