Special elements of semigroup of n-ary operations

Mara Hidayati, Y. Susanti
{"title":"Special elements of semigroup of n-ary operations","authors":"Mara Hidayati, Y. Susanti","doi":"10.1063/1.5139130","DOIUrl":null,"url":null,"abstract":"Let X be a finite set of m elements. Let On(X) be the set of all n-ary operations on X. On On(X), it is defined operation “+” with (f+g)(x¯)=f(g(x_1),g(x_2),…,g(x_n)), for all f, g ∈ On(X) and x¯=(x1,x2,…,xn) ∈ Xn, so that (On(X), +) is a semigroup. In this paper we give some properties of idempotent elements, regular elements, coregular elements, left zero elements and right identity elements on On(X). Moreover, from this properties, we provide some properties of nontrivial subsemigroups of the semigroup (On(X), +).Let X be a finite set of m elements. Let On(X) be the set of all n-ary operations on X. On On(X), it is defined operation “+” with (f+g)(x¯)=f(g(x_1),g(x_2),…,g(x_n)), for all f, g ∈ On(X) and x¯=(x1,x2,…,xn) ∈ Xn, so that (On(X), +) is a semigroup. In this paper we give some properties of idempotent elements, regular elements, coregular elements, left zero elements and right identity elements on On(X). Moreover, from this properties, we provide some properties of nontrivial subsemigroups of the semigroup (On(X), +).","PeriodicalId":209108,"journal":{"name":"PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: Deepening Mathematical Concepts for Wider Application through Multidisciplinary Research and Industries Collaborations","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: Deepening Mathematical Concepts for Wider Application through Multidisciplinary Research and Industries Collaborations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5139130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a finite set of m elements. Let On(X) be the set of all n-ary operations on X. On On(X), it is defined operation “+” with (f+g)(x¯)=f(g(x_1),g(x_2),…,g(x_n)), for all f, g ∈ On(X) and x¯=(x1,x2,…,xn) ∈ Xn, so that (On(X), +) is a semigroup. In this paper we give some properties of idempotent elements, regular elements, coregular elements, left zero elements and right identity elements on On(X). Moreover, from this properties, we provide some properties of nontrivial subsemigroups of the semigroup (On(X), +).Let X be a finite set of m elements. Let On(X) be the set of all n-ary operations on X. On On(X), it is defined operation “+” with (f+g)(x¯)=f(g(x_1),g(x_2),…,g(x_n)), for all f, g ∈ On(X) and x¯=(x1,x2,…,xn) ∈ Xn, so that (On(X), +) is a semigroup. In this paper we give some properties of idempotent elements, regular elements, coregular elements, left zero elements and right identity elements on On(X). Moreover, from this properties, we provide some properties of nontrivial subsemigroups of the semigroup (On(X), +).
n元运算半群的特殊元素
设X是由m个元素组成的有限集合。设On(X)是X上所有n元运算的集合。在On(X)上,定义运算“+”为(f+g)(X¯)=f(g(x_1),g(x_2),…,g(x_n)),对于所有f, g∈On(X)且X¯=(x1,x2,…,xn)∈xn,使得(On(X), +)是半群。本文给出了on (X)上幂等元、正则元、共正则元、左零元和右单位元的一些性质。并且,从这些性质出发,给出了半群(On(X), +)的非平凡子半群的一些性质。设X是由m个元素组成的有限集合。设On(X)是X上所有n元运算的集合。在On(X)上,定义运算“+”为(f+g)(X¯)=f(g(x_1),g(x_2),…,g(x_n)),对于所有f, g∈On(X)且X¯=(x1,x2,…,xn)∈xn,使得(On(X), +)是半群。本文给出了on (X)上幂等元、正则元、共正则元、左零元和右单位元的一些性质。并且,从这些性质出发,给出了半群(On(X), +)的非平凡子半群的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信