Linear programming approach for performance-driven data aggregation in networks of embedded sensors

C. Ferent, Varun Subramanian, Michael Gilberti, A. Doboli
{"title":"Linear programming approach for performance-driven data aggregation in networks of embedded sensors","authors":"C. Ferent, Varun Subramanian, Michael Gilberti, A. Doboli","doi":"10.1109/DATE.2010.5457041","DOIUrl":null,"url":null,"abstract":"Cyber Physical Systems are distributed systems-of-systems that integrate sensing, processing, networking and actuation. Aggregating physical data over space and in time emerges as an intrinsic part of data acquisition, and is critical for dependable decision making under performance and resource constraints. This paper presents a Linear Programming-based method for optimizing the aggregation of data sampled from geographically-distributed areas while satisfy timing, precision, and resource constraints. The paper presents experimental results for data aggregation, including a case study on gas detection using a network of sensors.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5457041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cyber Physical Systems are distributed systems-of-systems that integrate sensing, processing, networking and actuation. Aggregating physical data over space and in time emerges as an intrinsic part of data acquisition, and is critical for dependable decision making under performance and resource constraints. This paper presents a Linear Programming-based method for optimizing the aggregation of data sampled from geographically-distributed areas while satisfy timing, precision, and resource constraints. The paper presents experimental results for data aggregation, including a case study on gas detection using a network of sensors.
嵌入式传感器网络中性能驱动数据聚合的线性规划方法
网络物理系统是集成传感、处理、网络和驱动的分布式系统。在空间和时间上聚合物理数据是数据获取的内在组成部分,对于在性能和资源限制下做出可靠的决策至关重要。本文提出了一种基于线性规划的方法,在满足时间、精度和资源约束的情况下,对地理分布区域的采样数据进行聚合优化。本文介绍了数据聚合的实验结果,包括使用传感器网络进行气体检测的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信