Comparative Study of Imputation Algorithms Applied to the Prediction of Student Performance

Log. J. IGPL Pub Date : 2020-01-24 DOI:10.1093/jigpal/jzz071
Concepción Crespo-Turrado, J. Casteleiro-Roca, F. Lasheras, J. López-Vázquez, F. J. D. C. Juez, F. Castelo, J. Calvo-Rolle, E. Corchado
{"title":"Comparative Study of Imputation Algorithms Applied to the Prediction of Student Performance","authors":"Concepción Crespo-Turrado, J. Casteleiro-Roca, F. Lasheras, J. López-Vázquez, F. J. D. C. Juez, F. Castelo, J. Calvo-Rolle, E. Corchado","doi":"10.1093/jigpal/jzz071","DOIUrl":null,"url":null,"abstract":"\n Student performance and its evaluation remain a serious challenge for education systems. Frequently, the recording and processing of students’ scores in a specific curriculum have several flaws for various reasons. In this context, the absence of data from some of the student scores undermines the efficiency of any future analysis carried out in order to reach conclusions. When this is the case, missing data imputation algorithms are needed. These algorithms are capable of substituting, with a high level of accuracy, the missing data for predicted values. This research presents the hybridization of an algorithm previously proposed by the authors called adaptive assignation algorithm (AAA), with a well-known technique called multivariate imputation by chained equations (MICE). The results show how the suggested methodology outperforms both algorithms.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzz071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Student performance and its evaluation remain a serious challenge for education systems. Frequently, the recording and processing of students’ scores in a specific curriculum have several flaws for various reasons. In this context, the absence of data from some of the student scores undermines the efficiency of any future analysis carried out in order to reach conclusions. When this is the case, missing data imputation algorithms are needed. These algorithms are capable of substituting, with a high level of accuracy, the missing data for predicted values. This research presents the hybridization of an algorithm previously proposed by the authors called adaptive assignation algorithm (AAA), with a well-known technique called multivariate imputation by chained equations (MICE). The results show how the suggested methodology outperforms both algorithms.
应用于学生成绩预测的归算算法比较研究
学生表现及其评价仍然是教育系统面临的严峻挑战。由于种种原因,特定课程中学生成绩的记录和处理往往存在一些缺陷。在这种情况下,缺乏某些学生成绩的数据会损害未来为得出结论而进行的任何分析的效率。在这种情况下,就需要使用缺失数据输入算法。这些算法能够以较高的精度替换预测值的缺失数据。本研究提出了一种由作者提出的自适应分配算法(AAA)与链式方程多元imputation (MICE)相结合的算法。结果表明,所建议的方法优于两种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信