Genetic algorithm for a fuzzy spiking neural network of a mobile robot

N. Kubota, H. Sasaki
{"title":"Genetic algorithm for a fuzzy spiking neural network of a mobile robot","authors":"N. Kubota, H. Sasaki","doi":"10.1109/CIRA.2005.1554297","DOIUrl":null,"url":null,"abstract":"It is very difficult to design the learning structure of a robot beforehand in an unknown and dynamic environment, because the dynamics of the environment is unknown. Therefore, this paper proposes a fuzzy spiking neural network (FSNN) for behavior learning of a mobile robot. Furthermore, the network structure of the FSNN should be adaptive to the environmental condition. In this paper, we apply a steady-state genetic algorithm for acquiring the suitable network structure through the interaction with the environment. The simulation results show the robot can update the network structure and learn the weights of FSNN according to the spatio-temporal context of the facing environment.","PeriodicalId":162553,"journal":{"name":"2005 International Symposium on Computational Intelligence in Robotics and Automation","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2005.1554297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

It is very difficult to design the learning structure of a robot beforehand in an unknown and dynamic environment, because the dynamics of the environment is unknown. Therefore, this paper proposes a fuzzy spiking neural network (FSNN) for behavior learning of a mobile robot. Furthermore, the network structure of the FSNN should be adaptive to the environmental condition. In this paper, we apply a steady-state genetic algorithm for acquiring the suitable network structure through the interaction with the environment. The simulation results show the robot can update the network structure and learn the weights of FSNN according to the spatio-temporal context of the facing environment.
移动机器人模糊脉冲神经网络的遗传算法
在未知的动态环境中,由于环境的动力学是未知的,预先设计机器人的学习结构是非常困难的。因此,本文提出了一种用于移动机器人行为学习的模糊尖峰神经网络(FSNN)。此外,FSNN的网络结构应适应环境条件。本文采用稳态遗传算法,通过与环境的相互作用来获取合适的网络结构。仿真结果表明,机器人能够根据所面对环境的时空背景更新网络结构并学习FSNN的权值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信