A robust table registration method for batch table OCR processing

MOCR '13 Pub Date : 2013-08-24 DOI:10.1145/2505377.2505383
Jinyu Zuo, Esin Darici
{"title":"A robust table registration method for batch table OCR processing","authors":"Jinyu Zuo, Esin Darici","doi":"10.1145/2505377.2505383","DOIUrl":null,"url":null,"abstract":"A robust table registration method is proposed in this paper for a better understanding on structured information from scanned table images. Scanned images can be heavily degraded because of scanning effects, binarization or purely document itself. For batch processing images with the same table structure, normally the table model is provided and can be used to overcome most challenging quality factors. The given table model is used as the ground truth in this paper. However, only rough precision is needed on table cell dimensions and this makes providing the table model an easier task. The method was tested on Multilingual Automatic Document Classification Analysis and Translation (MADCAT) images and a promising performance is achieved.","PeriodicalId":288465,"journal":{"name":"MOCR '13","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOCR '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505377.2505383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A robust table registration method is proposed in this paper for a better understanding on structured information from scanned table images. Scanned images can be heavily degraded because of scanning effects, binarization or purely document itself. For batch processing images with the same table structure, normally the table model is provided and can be used to overcome most challenging quality factors. The given table model is used as the ground truth in this paper. However, only rough precision is needed on table cell dimensions and this makes providing the table model an easier task. The method was tested on Multilingual Automatic Document Classification Analysis and Translation (MADCAT) images and a promising performance is achieved.
批处理表OCR处理的鲁棒表注册方法
为了更好地理解扫描表图像中的结构化信息,本文提出了一种鲁棒的表配准方法。由于扫描效果、二值化或纯粹的文档本身,扫描图像可能会严重退化。对于具有相同表结构的批处理图像,通常提供表模型,并可用于克服最具挑战性的质量因素。本文采用给定的表模型作为基础真值。然而,表单元格尺寸只需要粗略的精度,这使得提供表模型成为一项更容易的任务。该方法在多语种自动文档分类分析与翻译(MADCAT)图像上进行了测试,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信