{"title":"An efficient primal-dual approach to chance-constrained economic dispatch","authors":"G. Martinez, Yu Zhang, G. Giannakis","doi":"10.1109/NAPS.2014.6965379","DOIUrl":null,"url":null,"abstract":"To effectively enhance the integration of distributed and renewable energy sources in future smart microgrids, economical energy management accounting for the principal challenge of the variable and non-dispatchable renewables is indispensable and of significant importance. Day-ahead economic generation dispatch with demand-side management for a micro-grid in islanded mode is considered in this paper. With the goal of limiting the risk of the loss-of-load probability, a joint chance constrained optimization problem is formulated for the optimal multi-period energy scheduling with multiple wind farms. Bypassing the intractable spatio-temporal joint distribution of the wind power generation, a primal-dual approach is used to obtain a suboptimal solution efficiently. The method is based on first-order optimality conditions and successive approximation of the probabilistic constraint by generation of p-efficient points. Numerical results are reported to corroborate the merits of this approach.","PeriodicalId":421766,"journal":{"name":"2014 North American Power Symposium (NAPS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2014.6965379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
To effectively enhance the integration of distributed and renewable energy sources in future smart microgrids, economical energy management accounting for the principal challenge of the variable and non-dispatchable renewables is indispensable and of significant importance. Day-ahead economic generation dispatch with demand-side management for a micro-grid in islanded mode is considered in this paper. With the goal of limiting the risk of the loss-of-load probability, a joint chance constrained optimization problem is formulated for the optimal multi-period energy scheduling with multiple wind farms. Bypassing the intractable spatio-temporal joint distribution of the wind power generation, a primal-dual approach is used to obtain a suboptimal solution efficiently. The method is based on first-order optimality conditions and successive approximation of the probabilistic constraint by generation of p-efficient points. Numerical results are reported to corroborate the merits of this approach.