Sonia Ben Mokhtar, Jérémie Decouchant, Vivien Quéma
{"title":"AcTinG: Accurate Freerider Tracking in Gossip","authors":"Sonia Ben Mokhtar, Jérémie Decouchant, Vivien Quéma","doi":"10.1109/SRDS.2014.12","DOIUrl":null,"url":null,"abstract":"Gossip-based content dissemination protocols are a scalable and cheap alternative to centralized content sharing systems. However, it is well known that these protocols suffer from rational nodes, i.e., nodes that aim at downloading the content without contributing their fair share to the system. While the problem of rational nodes that act individually has been well addressed in the literature, colluding rational nodes is still an open issue. Indeed, LiFTinG, the only existing gossip protocol addressing this issue, yields a high ratio of false positive accusations of correct nodes. In this paper, we propose AcTinG, a protocol that prevents rational collusions in gossip-based content dissemination protocols, while guaranteeing zero false positive accusations. We assess the performance of AcTinG on a testbed comprising 400 nodes running on 100 physical machines, and compare its behaviour in the presence of colluders against two state-of-the-art protocols: BAR Gossip that is the most robust protocol handling non-colluding rational nodes, and LiFTinG, the only existing gossip protocol that handles colluding nodes. The performance evaluation shows that AcTinG is able to deliver all messages despite the presence of colluders, whereas LiFTinG and BAR Gossip, both suffer heavy message losses. Finally, using simulations involving up to a million nodes, we show that AcTinG exhibits similar scalability properties as standard gossip-based dissemination protocols.","PeriodicalId":440331,"journal":{"name":"2014 IEEE 33rd International Symposium on Reliable Distributed Systems","volume":"34 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 33rd International Symposium on Reliable Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2014.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Gossip-based content dissemination protocols are a scalable and cheap alternative to centralized content sharing systems. However, it is well known that these protocols suffer from rational nodes, i.e., nodes that aim at downloading the content without contributing their fair share to the system. While the problem of rational nodes that act individually has been well addressed in the literature, colluding rational nodes is still an open issue. Indeed, LiFTinG, the only existing gossip protocol addressing this issue, yields a high ratio of false positive accusations of correct nodes. In this paper, we propose AcTinG, a protocol that prevents rational collusions in gossip-based content dissemination protocols, while guaranteeing zero false positive accusations. We assess the performance of AcTinG on a testbed comprising 400 nodes running on 100 physical machines, and compare its behaviour in the presence of colluders against two state-of-the-art protocols: BAR Gossip that is the most robust protocol handling non-colluding rational nodes, and LiFTinG, the only existing gossip protocol that handles colluding nodes. The performance evaluation shows that AcTinG is able to deliver all messages despite the presence of colluders, whereas LiFTinG and BAR Gossip, both suffer heavy message losses. Finally, using simulations involving up to a million nodes, we show that AcTinG exhibits similar scalability properties as standard gossip-based dissemination protocols.