SOS lower bound for exact planted clique

Shuo Pang
{"title":"SOS lower bound for exact planted clique","authors":"Shuo Pang","doi":"10.4230/LIPIcs.CCC.2021.26","DOIUrl":null,"url":null,"abstract":"We prove a SOS degree lower bound for the planted clique problem on the Erdös-Rényi random graph G(n, 1/2). The bound we get is degree d = Ω(ϵ2 log n/ log log n) for clique size ω = n1/2−ϵ, which is almost tight. This improves the result of [5] for the \"soft\" version of the problem, where the family of the equality-axioms generated by x1 + ... + xn = ω is relaxed to one inequality x1 + ... + xn ≥ ω. As a technical by-product, we also \"naturalize\" certain techniques that were developed and used for the relaxed problem. This includes a new way to define the pseudo-expectation, and a more robust method to solve out the coarse diagonalization of the moment matrix.","PeriodicalId":336911,"journal":{"name":"Proceedings of the 36th Computational Complexity Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th Computational Complexity Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2021.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We prove a SOS degree lower bound for the planted clique problem on the Erdös-Rényi random graph G(n, 1/2). The bound we get is degree d = Ω(ϵ2 log n/ log log n) for clique size ω = n1/2−ϵ, which is almost tight. This improves the result of [5] for the "soft" version of the problem, where the family of the equality-axioms generated by x1 + ... + xn = ω is relaxed to one inequality x1 + ... + xn ≥ ω. As a technical by-product, we also "naturalize" certain techniques that were developed and used for the relaxed problem. This includes a new way to define the pseudo-expectation, and a more robust method to solve out the coarse diagonalization of the moment matrix.
精确种植集团的SOS下界
我们证明了Erdös-Rényi随机图G(n, 1/2)上植团问题的一个SOS度下界。我们得到的界是度d = Ω(ϵ2 log n/ log log n)对于团的大小Ω = n1/2−ε,这几乎是紧密的。这改进了[5]对问题“软”版本的结果,其中由x1 +…生成的相等公理族+ xn = ω松弛为一个不等式x1 +…+ xn≥ω。作为一种技术副产品,我们也“归化”了某些技术,这些技术是为放松问题开发和使用的。这包括一种新的定义伪期望的方法,以及一种更鲁棒的求解矩矩阵粗对角化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信