The Relationship between Generalization Error and the Training Sample Number of SVM

Junqing Bai, Guirong Yan, Wentao Mao
{"title":"The Relationship between Generalization Error and the Training Sample Number of SVM","authors":"Junqing Bai, Guirong Yan, Wentao Mao","doi":"10.1109/ICNC.2009.479","DOIUrl":null,"url":null,"abstract":"It is very important to construct the training set and determine the sample number in the regression problem. In this paper, a new idea of constructing the training set is elaborated. The key point of this idea is to choose the hyper-parameters before determining the training set. More importantly, a heuristic approach is proposed to select samples of support vector machine (SVM). Using these methods, the relationship between generalization error and the number of training samples on a given confidence level is computed. The empirical results on benchmark data (Boston Housing) and engineering data indicate that the proposed approach can give a reference to construct the proper training set. Moreover, the proposed approach has practical significance for other parametric learning machine.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"41 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is very important to construct the training set and determine the sample number in the regression problem. In this paper, a new idea of constructing the training set is elaborated. The key point of this idea is to choose the hyper-parameters before determining the training set. More importantly, a heuristic approach is proposed to select samples of support vector machine (SVM). Using these methods, the relationship between generalization error and the number of training samples on a given confidence level is computed. The empirical results on benchmark data (Boston Housing) and engineering data indicate that the proposed approach can give a reference to construct the proper training set. Moreover, the proposed approach has practical significance for other parametric learning machine.
支持向量机泛化误差与训练样本数的关系
在回归问题中,训练集的构造和样本数的确定是非常重要的。本文阐述了一种构造训练集的新思路。该思想的关键是在确定训练集之前选择超参数。更重要的是,提出了一种启发式的支持向量机(SVM)样本选择方法。利用这些方法,计算了给定置信水平上泛化误差与训练样本数量之间的关系。通过对基准数据(Boston Housing)和工程数据的实证研究表明,该方法可以为构建合适的训练集提供参考。此外,所提出的方法对其他参数学习机也具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信