{"title":"The Relationship between Generalization Error and the Training Sample Number of SVM","authors":"Junqing Bai, Guirong Yan, Wentao Mao","doi":"10.1109/ICNC.2009.479","DOIUrl":null,"url":null,"abstract":"It is very important to construct the training set and determine the sample number in the regression problem. In this paper, a new idea of constructing the training set is elaborated. The key point of this idea is to choose the hyper-parameters before determining the training set. More importantly, a heuristic approach is proposed to select samples of support vector machine (SVM). Using these methods, the relationship between generalization error and the number of training samples on a given confidence level is computed. The empirical results on benchmark data (Boston Housing) and engineering data indicate that the proposed approach can give a reference to construct the proper training set. Moreover, the proposed approach has practical significance for other parametric learning machine.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"41 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is very important to construct the training set and determine the sample number in the regression problem. In this paper, a new idea of constructing the training set is elaborated. The key point of this idea is to choose the hyper-parameters before determining the training set. More importantly, a heuristic approach is proposed to select samples of support vector machine (SVM). Using these methods, the relationship between generalization error and the number of training samples on a given confidence level is computed. The empirical results on benchmark data (Boston Housing) and engineering data indicate that the proposed approach can give a reference to construct the proper training set. Moreover, the proposed approach has practical significance for other parametric learning machine.