False Data Detection in Distributed Oscillation Mode Estimation using Hierarchical k-means

Arezoo Rajabi, R. Bobba
{"title":"False Data Detection in Distributed Oscillation Mode Estimation using Hierarchical k-means","authors":"Arezoo Rajabi, R. Bobba","doi":"10.1109/SmartGridComm.2019.8909709","DOIUrl":null,"url":null,"abstract":"Wide-area oscillation monitoring and control in power systems is essential for preventing large-scale outages. To detect and estimate oscillation modes in real-time distributed measurement-based mode estimation approaches have been proposed. Unfortunately, these methods are vulnerable to false data injection attacks. In this paper we propose a hierarchical k-means false data detection approach to detect and remove false data from distributed Prony algorithms for oscillation mode estimation. Our proposed method is able to detect both multi-goal adversaries and noisy outliers equally well. We empirically illustrate the resiliency of our method against different attacks and show that it can detect corrupted data and accurately estimate oscillation modes.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wide-area oscillation monitoring and control in power systems is essential for preventing large-scale outages. To detect and estimate oscillation modes in real-time distributed measurement-based mode estimation approaches have been proposed. Unfortunately, these methods are vulnerable to false data injection attacks. In this paper we propose a hierarchical k-means false data detection approach to detect and remove false data from distributed Prony algorithms for oscillation mode estimation. Our proposed method is able to detect both multi-goal adversaries and noisy outliers equally well. We empirically illustrate the resiliency of our method against different attacks and show that it can detect corrupted data and accurately estimate oscillation modes.
基于分层k-均值的分布式振荡模式估计中的假数据检测
电力系统的广域振荡监测与控制是防止大规模停电的必要手段。为了检测和估计实时分布测量中的振荡模态,提出了基于模态估计的方法。不幸的是,这些方法容易受到虚假数据注入攻击。在本文中,我们提出了一种分层k-means伪数据检测方法来检测和去除用于振荡模式估计的分布式proony算法中的伪数据。我们提出的方法能够很好地检测多目标对手和噪声异常值。我们的经验说明了我们的方法对不同攻击的弹性,并表明它可以检测损坏的数据和准确地估计振荡模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信