Sukhpreet Kaur, K. S. Mann
{"title":"Retinal Vessel Segmentation Using an Entropy-Based Optimization Algorithm","authors":"Sukhpreet Kaur, K. S. Mann","doi":"10.4018/ijhisi.2020040105","DOIUrl":null,"url":null,"abstract":"Thisarticlepresentsanalgorithmforthesegmentationofretinalbloodvesselsforthedetectionof diabeticretinopathyeyediseases.Thisdiseaseoccursinpatientswithuntreateddiabetesforalongtime. Sincethisdiseaseisrelatedtotheretina,itcaneventuallyleadtovisionimpairment.Theproposed algorithmisasupervisedlearningmethodofbloodvesselssegmentationinwhichtheclassification system is trained with the features that are extracted from the images. The proposed system is implementedontheimagesofDRIVE,STAREandCHASE_DB1databases.Thesegmentationis donebyformingclusterswiththefeaturesofpatterns.Thefeatureswereextractedusingindependent componentanalysisand theclassification isperformedbysupportvectormachines (SVM).The resultsoftheparametersaregroupedbyaccuracy,sensitivity,specificity,positivepredictivevalue, falsepositiverateandarecomparedwithparticleswarmoptimization(PSO),thefireflyoptimization algorithm(FA)andthelionoptimizationalgorithm(LOA). KEywORdS Diabetic Retinopathy, Feature Extraction, Optimization, Retinal Vessels","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijhisi.2020040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
基于熵优化算法的视网膜血管分割
Thisarticlepresentsanalgorithmforthesegmentationofretinalbloodvesselsforthedetectionof diabeticretinopathyeyediseases.Thisdiseaseoccursinpatientswithuntreateddiabetesforalongtime。Sincethisdiseaseisrelatedtotheretina,itcaneventuallyleadtovisionimpairment。Theproposed algorithmisasupervisedlearningmethodofbloodvesselssegmentationinwhichtheclassification system是用从图像中提取的特征来训练的。建议的系统是implementedontheimagesofDRIVE,STAREandCHASE_DB1databases。Thesegmentationis donebyformingclusterswiththefeaturesofpatterns。Thefeatureswereextractedusingindependent componentanalysisand theclassification isperformedbysupportvectormachines (SVM)。The resultsoftheparametersaregroupedbyaccuracy、sensitivity、specificity、positivepredictivevalue、falsepositiverateandarecomparedwithparticleswarmoptimization(PSO)、thefireflyoptimization algorithm_ (FA)andthelionoptimizationalgorithm(LOA)。关键词:糖尿病视网膜病变;特征提取;优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。