Sketching the Expression: Flexible Rendering of Expressive Piano Performance with Self-Supervised Learning

Seungyeon Rhyu, Sarah Kim, Kyogu Lee
{"title":"Sketching the Expression: Flexible Rendering of Expressive Piano Performance with Self-Supervised Learning","authors":"Seungyeon Rhyu, Sarah Kim, Kyogu Lee","doi":"10.48550/arXiv.2208.14867","DOIUrl":null,"url":null,"abstract":"We propose a system for rendering a symbolic piano performance with flexible musical expression. It is necessary to actively control musical expression for creating a new music performance that conveys various emotions or nuances. However, previous approaches were limited to following the composer's guidelines of musical expression or dealing with only a part of the musical attributes. We aim to disentangle the entire musical expression and structural attribute of piano performance using a conditional VAE framework. It stochastically generates expressive parameters from latent representations and given note structures. In addition, we employ self-supervised approaches that force the latent variables to represent target attributes. Finally, we leverage a two-step encoder and decoder that learn hierarchical dependency to enhance the naturalness of the output. Experimental results show that our system can stably generate performance parameters relevant to the given musical scores, learn disentangled representations, and control musical attributes independently of each other.","PeriodicalId":309903,"journal":{"name":"International Society for Music Information Retrieval Conference","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Society for Music Information Retrieval Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.14867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a system for rendering a symbolic piano performance with flexible musical expression. It is necessary to actively control musical expression for creating a new music performance that conveys various emotions or nuances. However, previous approaches were limited to following the composer's guidelines of musical expression or dealing with only a part of the musical attributes. We aim to disentangle the entire musical expression and structural attribute of piano performance using a conditional VAE framework. It stochastically generates expressive parameters from latent representations and given note structures. In addition, we employ self-supervised approaches that force the latent variables to represent target attributes. Finally, we leverage a two-step encoder and decoder that learn hierarchical dependency to enhance the naturalness of the output. Experimental results show that our system can stably generate performance parameters relevant to the given musical scores, learn disentangled representations, and control musical attributes independently of each other.
写生表达:自我监督学习下钢琴表现力演奏的灵活呈现
我们提出了一个用灵活的音乐表达来呈现象征性钢琴演奏的系统。要想创作出能传达各种情感或细微差别的新的音乐表演,就必须积极地控制音乐的表现力。然而,以前的方法仅限于遵循作曲家的音乐表现准则或只处理部分音乐属性。我们的目标是用一个有条件的VAE框架来解开钢琴演奏的整个音乐表达和结构属性。它从潜在表征和给定的音符结构中随机生成表达参数。此外,我们采用自监督方法,迫使潜在变量表示目标属性。最后,我们利用学习分层依赖关系的两步编码器和解码器来增强输出的自然性。实验结果表明,该系统可以稳定地生成与给定乐谱相关的性能参数,学习解纠缠表示,并独立地控制音乐属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信