Evaluating Ensemble Strategies for Recommender Systems under Metadata Reduction

Lassion Laique Bomfim de Souza Santana, Alesson Bruno Santos Souza, Diego Lima Santana, Wendel Araújo Dourado, F. Durão
{"title":"Evaluating Ensemble Strategies for Recommender Systems under Metadata Reduction","authors":"Lassion Laique Bomfim de Souza Santana, Alesson Bruno Santos Souza, Diego Lima Santana, Wendel Araújo Dourado, F. Durão","doi":"10.1145/3126858.3126879","DOIUrl":null,"url":null,"abstract":"Recommender systems are information filtering tools that aspire to predict accurate ratings for users and items, with the ultimate goal of providing users with personalized and relevant recommendations. Recommender system that rely on the combination of quality metadata, i.e., all descriptive information about an item, are likely to be successful in the process of finding what is relevant or not for a target user. The problem arises when either data is sparse or important metadata is not available, making it hard for recommender systems to predict proper user-item ratings. In particular, this study investigates how our proposed collaborative-filtering recommender performs when important metadata is reduced from a dataset. To evaluate our approach use the HetRec 2011 2k dataset with five different movie metadata (genres, tags, directors, actors and countries). By applying our approach of metadata reduction, we provide a comprehensive analysis on how mean average precision is affected as important metadata become unavailable.","PeriodicalId":338362,"journal":{"name":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3126858.3126879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recommender systems are information filtering tools that aspire to predict accurate ratings for users and items, with the ultimate goal of providing users with personalized and relevant recommendations. Recommender system that rely on the combination of quality metadata, i.e., all descriptive information about an item, are likely to be successful in the process of finding what is relevant or not for a target user. The problem arises when either data is sparse or important metadata is not available, making it hard for recommender systems to predict proper user-item ratings. In particular, this study investigates how our proposed collaborative-filtering recommender performs when important metadata is reduced from a dataset. To evaluate our approach use the HetRec 2011 2k dataset with five different movie metadata (genres, tags, directors, actors and countries). By applying our approach of metadata reduction, we provide a comprehensive analysis on how mean average precision is affected as important metadata become unavailable.
元数据约简下推荐系统集成策略评价
推荐系统是一种信息过滤工具,旨在预测用户和物品的准确评级,最终目标是为用户提供个性化和相关的推荐。依赖于高质量元数据组合的推荐系统,即关于一个项目的所有描述性信息,很可能在找到与目标用户相关或不相关的过程中成功。当数据稀疏或重要的元数据不可用时,问题就出现了,这使得推荐系统很难预测正确的用户-商品评级。特别地,本研究调查了我们提出的协同过滤推荐在从数据集中减少重要元数据时的表现。为了评估我们的方法,使用HetRec 2011 2k数据集与五个不同的电影元数据(类型,标签,导演,演员和国家)。通过应用我们的元数据约简方法,我们对重要元数据不可用时平均精度的影响进行了全面分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信