Fatemeh Banitorfian, F. Eshghabadi, Asrulnizam Abd Manaf, N. Noh, M. T. Mustaffa
{"title":"Radio-frequency silicon-based CMOS-compatible MEMS variable solenoid micro-fluidic inductor with Galinstan-based continuously-adjustable turn-ratio technique","authors":"Fatemeh Banitorfian, F. Eshghabadi, Asrulnizam Abd Manaf, N. Noh, M. T. Mustaffa","doi":"10.1109/ACQED.2015.7274014","DOIUrl":null,"url":null,"abstract":"This paper proposes a continuously-variable MEMS solenoid inductor with resonating frequency of over 8 GHz. This inductor allows high-tuning capability for resonance adjustment purpose in reconfigurable radio-frequency circuit devices. To achieve this goal, a channel is contrived to bypass the turns of the coil through the injection of a conductive liquid (here, Galinstan). Once the number of turns decreases, the inductance value falls according to the injection level. The proposed solenoid inductor is simulated using a full-wave three-dimensional electromagnetic analysis tool, HFSS, for silicon substrate with copper metallic coil for different level of conductive liquid injection. Beside the cost-effective and easy manufacturing process, the simulation results demonstrate the 150% tuning range. The EM simulation results show a maximum quality factor of 85 at 3 GHz for proposed inductor. The minimum and maximum inductance values are 1.5 and 4 nH at 4 GHz for low-resistivity Silicon. This tunable inductor can be applied into reconfigurable radio-frequency circuits and matching networks to tune the operating frequency of the system.","PeriodicalId":376857,"journal":{"name":"2015 6th Asia Symposium on Quality Electronic Design (ASQED)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th Asia Symposium on Quality Electronic Design (ASQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACQED.2015.7274014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper proposes a continuously-variable MEMS solenoid inductor with resonating frequency of over 8 GHz. This inductor allows high-tuning capability for resonance adjustment purpose in reconfigurable radio-frequency circuit devices. To achieve this goal, a channel is contrived to bypass the turns of the coil through the injection of a conductive liquid (here, Galinstan). Once the number of turns decreases, the inductance value falls according to the injection level. The proposed solenoid inductor is simulated using a full-wave three-dimensional electromagnetic analysis tool, HFSS, for silicon substrate with copper metallic coil for different level of conductive liquid injection. Beside the cost-effective and easy manufacturing process, the simulation results demonstrate the 150% tuning range. The EM simulation results show a maximum quality factor of 85 at 3 GHz for proposed inductor. The minimum and maximum inductance values are 1.5 and 4 nH at 4 GHz for low-resistivity Silicon. This tunable inductor can be applied into reconfigurable radio-frequency circuits and matching networks to tune the operating frequency of the system.