A Hybrid Algorithm for Sparse Antenna Array Optimization of MIMO Radar

Chen Feng, Haojian Ye, Hong Hong, E. Wang, Xiaohua Zhu
{"title":"A Hybrid Algorithm for Sparse Antenna Array Optimization of MIMO Radar","authors":"Chen Feng, Haojian Ye, Hong Hong, E. Wang, Xiaohua Zhu","doi":"10.1109/RWS53089.2022.9719968","DOIUrl":null,"url":null,"abstract":"A sparse array is designed to achieve a narrower beam without increasing hardware costs. To reduce the peak side-lobe level and the grating lobe in the desired ambiguity-free region, a hybrid algorithm combining particle swarm optimization (PSO) and convex optimization is presented. While the main beam scans in the desired region, the positions and excitation of array elements are alternately optimized by PSO and convex optimization, respectively. The simulation results show that, compared with the PSO algorithm alone, the hybrid algorithm obtains the lower peak side-lobe level. Furthermore, the side lobes remain almost the same in the desired region when the beam scans. A multiple-input multiple-output (MIMO) radar prototype equipped with the designed sparse array is presented. The experimental result shows that two closely placed moving targets can be separated in two-dimension (2-D) by the MIMO system, which certificates the effectiveness of the proposed algorithm in actual scenarios.","PeriodicalId":113074,"journal":{"name":"2022 IEEE Radio and Wireless Symposium (RWS)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS53089.2022.9719968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A sparse array is designed to achieve a narrower beam without increasing hardware costs. To reduce the peak side-lobe level and the grating lobe in the desired ambiguity-free region, a hybrid algorithm combining particle swarm optimization (PSO) and convex optimization is presented. While the main beam scans in the desired region, the positions and excitation of array elements are alternately optimized by PSO and convex optimization, respectively. The simulation results show that, compared with the PSO algorithm alone, the hybrid algorithm obtains the lower peak side-lobe level. Furthermore, the side lobes remain almost the same in the desired region when the beam scans. A multiple-input multiple-output (MIMO) radar prototype equipped with the designed sparse array is presented. The experimental result shows that two closely placed moving targets can be separated in two-dimension (2-D) by the MIMO system, which certificates the effectiveness of the proposed algorithm in actual scenarios.
MIMO雷达稀疏天线阵优化的混合算法
稀疏阵列的设计是为了在不增加硬件成本的情况下实现更窄的波束。为了降低峰值旁瓣电平和光栅瓣在理想的无模糊区,提出了一种粒子群优化和凸优化相结合的混合算法。当主波束在期望区域扫描时,分别采用粒子群优化和凸优化交替优化阵列元素的位置和激励。仿真结果表明,与单独的粒子群算法相比,混合算法获得了更低的峰值旁瓣电平。此外,当光束扫描时,侧瓣在所需区域几乎保持不变。提出了一种基于稀疏阵列的多输入多输出(MIMO)雷达样机。实验结果表明,MIMO系统可以在二维(2-D)空间内分离两个距离较近的运动目标,验证了该算法在实际场景中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信