Research on Parameter Optimization of the Boolean Kernel Function

Han Feng, Du Yingshuang, Cui Kebin, Zhang Shumao
{"title":"Research on Parameter Optimization of the Boolean Kernel Function","authors":"Han Feng, Du Yingshuang, Cui Kebin, Zhang Shumao","doi":"10.1109/ICACTE.2008.81","DOIUrl":null,"url":null,"abstract":"It is significant to choose super parameter of the kernel function in non-liner SVM for the constructed classifier. As to the boolean kernel function, the research is comparatively less than other kernel function in the internal and international country, and the selection of its parameter is mainly through handwork. This paper researched and analyzed some main measure to choosing parameter of kernel function, discussed the optimizing principle of parameter, which to minimize the RM bound. In the paper, it proposed an abbreviated algorithm by adopting constant iterative step length to optimize the parameter, aiming at super parameter of the boolean kernel function KMDNF, which implemented automatic selection.","PeriodicalId":364568,"journal":{"name":"2008 International Conference on Advanced Computer Theory and Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Advanced Computer Theory and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTE.2008.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is significant to choose super parameter of the kernel function in non-liner SVM for the constructed classifier. As to the boolean kernel function, the research is comparatively less than other kernel function in the internal and international country, and the selection of its parameter is mainly through handwork. This paper researched and analyzed some main measure to choosing parameter of kernel function, discussed the optimizing principle of parameter, which to minimize the RM bound. In the paper, it proposed an abbreviated algorithm by adopting constant iterative step length to optimize the parameter, aiming at super parameter of the boolean kernel function KMDNF, which implemented automatic selection.
布尔核函数参数优化研究
对于所构建的分类器,选择非线性支持向量机核函数的超参数具有重要意义。对于布尔核函数,国内外的研究相对较少,其参数的选取主要是手工选取。研究分析了核函数参数选择的几种主要措施,讨论了参数的优化原则,使核函数的RM界最小。本文针对布尔核函数KMDNF的超参数,提出了一种采用恒迭代步长进行参数优化的简化算法,实现了自动选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信