Multiple Kernel Learning by Conditional Entropy Minimization

H. Hino, N. Reyhani, Noboru Murata
{"title":"Multiple Kernel Learning by Conditional Entropy Minimization","authors":"H. Hino, N. Reyhani, Noboru Murata","doi":"10.1109/ICMLA.2010.40","DOIUrl":null,"url":null,"abstract":"Kernel methods have been successfully used in many practical machine learning problems. Choosing a suitable kernel is left to the practitioner. A common way to an automatic selection of optimal kernels is to learn a linear combination of element kernels. In this paper, a novel framework of multiple kernel learning is proposed based on conditional entropy minimization criterion. For the proposed framework, three multiple kernel learning algorithms are derived. The algorithms are experimentally shown to be comparable to or outperform kernel Fisher discriminant analysis and other multiple kernel learning algorithms on benchmark data sets.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"70 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Kernel methods have been successfully used in many practical machine learning problems. Choosing a suitable kernel is left to the practitioner. A common way to an automatic selection of optimal kernels is to learn a linear combination of element kernels. In this paper, a novel framework of multiple kernel learning is proposed based on conditional entropy minimization criterion. For the proposed framework, three multiple kernel learning algorithms are derived. The algorithms are experimentally shown to be comparable to or outperform kernel Fisher discriminant analysis and other multiple kernel learning algorithms on benchmark data sets.
基于条件熵最小化的多核学习
核方法已经成功地应用于许多实际的机器学习问题。选择一个合适的内核留给实践者。自动选择最优核的一种常用方法是学习元素核的线性组合。提出了一种基于条件熵最小化准则的多核学习框架。针对所提出的框架,推导了三种多核学习算法。实验表明,在基准数据集上,这些算法与核Fisher判别分析和其他多核学习算法相当或优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信