{"title":"Analyzing Transferability of Happiness Detection via Gaze Tracking in Multimedia Applications","authors":"David Bethge, L. Chuang, T. Große-Puppendahl","doi":"10.1145/3379157.3391655","DOIUrl":null,"url":null,"abstract":"How are strong positive affective states related to eye-tracking features and how can they be used to appropriately enhance well-being in multimedia consumption? In this paper, we propose a robust classification algorithm for predicting strong happy emotions from a large set of features acquired from wearable eye-tracking glasses. We evaluate the potential transferability across subjects and provide a model-agnostic interpretable feature importance metric. Our proposed algorithm achieves a true-positive-rate of 70% while keeping a low false-positive-rate of 10% with extracted features of the pupil diameter as most important features.","PeriodicalId":226088,"journal":{"name":"ACM Symposium on Eye Tracking Research and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379157.3391655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
How are strong positive affective states related to eye-tracking features and how can they be used to appropriately enhance well-being in multimedia consumption? In this paper, we propose a robust classification algorithm for predicting strong happy emotions from a large set of features acquired from wearable eye-tracking glasses. We evaluate the potential transferability across subjects and provide a model-agnostic interpretable feature importance metric. Our proposed algorithm achieves a true-positive-rate of 70% while keeping a low false-positive-rate of 10% with extracted features of the pupil diameter as most important features.