Paddy Yield Forecasting using Regression Techniques

Chandrakumar T, Avanthica Sri M M, Mirdula K, Monika K
{"title":"Paddy Yield Forecasting using Regression Techniques","authors":"Chandrakumar T, Avanthica Sri M M, Mirdula K, Monika K","doi":"10.1109/DELCON57910.2023.10127256","DOIUrl":null,"url":null,"abstract":"India is one of the well-known countries whose socioeconomic position is heavily influenced by agriculture. Plant and livestock cultivation are the most important practices in agriculture. The cultivation of food surpluses enables people to live in cities. Agriculture employs over 70 percent of Tamil Nadu's population. It is a key source of income in Tamil Nadu. Paddy cultivation is significant as it is the main food for the majority of the Indians. The dataset used for this study includes various varieties of paddy grown in the Madurai district of Tamil Nadu. The dataset includes average paddy crop yield, Madurai taluks, soil type, soil pH, nitrogen, temperature, duration, and rainfall. This paper compares different regression algorithms and suggests an optimal algorithm that is used in a ML (Machine Learning) model that forecasts paddy yield. The machine learning regression techniques are multiple linear regression, lasso regression, and ridge regression. This paper concludes by discussing future work topics and the suitable algorithm to be employed in the model for yield prediction of a paddy crop.","PeriodicalId":193577,"journal":{"name":"2023 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DELCON57910.2023.10127256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

India is one of the well-known countries whose socioeconomic position is heavily influenced by agriculture. Plant and livestock cultivation are the most important practices in agriculture. The cultivation of food surpluses enables people to live in cities. Agriculture employs over 70 percent of Tamil Nadu's population. It is a key source of income in Tamil Nadu. Paddy cultivation is significant as it is the main food for the majority of the Indians. The dataset used for this study includes various varieties of paddy grown in the Madurai district of Tamil Nadu. The dataset includes average paddy crop yield, Madurai taluks, soil type, soil pH, nitrogen, temperature, duration, and rainfall. This paper compares different regression algorithms and suggests an optimal algorithm that is used in a ML (Machine Learning) model that forecasts paddy yield. The machine learning regression techniques are multiple linear regression, lasso regression, and ridge regression. This paper concludes by discussing future work topics and the suitable algorithm to be employed in the model for yield prediction of a paddy crop.
利用回归技术预测水稻产量
印度是众所周知的社会经济地位深受农业影响的国家之一。植物和牲畜的种植是农业中最重要的做法。剩余粮食的种植使人们能够在城市生活。农业雇佣了泰米尔纳德邦70%以上的人口。这是泰米尔纳德邦的主要收入来源。水稻种植很重要,因为它是大多数印度人的主要食物。本研究使用的数据集包括泰米尔纳德邦马杜赖地区种植的各种水稻。该数据集包括平均水稻作物产量、马杜赖谈话、土壤类型、土壤pH值、氮、温度、持续时间和降雨量。本文比较了不同的回归算法,并提出了一种用于预测水稻产量的ML(机器学习)模型的最佳算法。机器学习的回归技术有多元线性回归、lasso回归和ridge回归。最后,对今后的工作方向和模型中适用的水稻作物产量预测算法进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信