{"title":"Data-Driven Frequency Bands Selection in EEG-Based Brain-Computer Interface","authors":"Heung-Il Suk, Seong-Whan Lee","doi":"10.1109/PRNI.2011.19","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method of frequency bands selection based on the analysis of a channel-frequency map, which we call 'channel-frequency map'. The spatial filtering, feature extraction, and classification processes are operated in each frequency band in parallel. We determine a class label for an input EEG based on the outputs from the multi-streams with a two-step decision strategy at the end. From our experiments on a public dataset of BCI Competition IV (2008) II-a that includes four motor imagery tasks from 9 subjects, the proposed algorithm outperformed the Common Spatial Pattern (CSP) algorithm and a filter bank CSP algorithm on average in terms of a session-to-session transfer rate using one session for training and the other session for test. A considerable increase of classification accuracy has been achieved for certain subjects. We also would like to note that the proposed data-driven frequency bands selection method is applicable to other single-trial EEG classification that is based on modulations of brain rhythms.","PeriodicalId":196419,"journal":{"name":"2011 International Workshop on Pattern Recognition in NeuroImaging","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2011.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, we propose a novel method of frequency bands selection based on the analysis of a channel-frequency map, which we call 'channel-frequency map'. The spatial filtering, feature extraction, and classification processes are operated in each frequency band in parallel. We determine a class label for an input EEG based on the outputs from the multi-streams with a two-step decision strategy at the end. From our experiments on a public dataset of BCI Competition IV (2008) II-a that includes four motor imagery tasks from 9 subjects, the proposed algorithm outperformed the Common Spatial Pattern (CSP) algorithm and a filter bank CSP algorithm on average in terms of a session-to-session transfer rate using one session for training and the other session for test. A considerable increase of classification accuracy has been achieved for certain subjects. We also would like to note that the proposed data-driven frequency bands selection method is applicable to other single-trial EEG classification that is based on modulations of brain rhythms.