Autoregressive Spectrum Hole Prediction Model for Cognitive Radio Systems

Zhigang Wen, T. Luo, Weidong Xiang, S. Majhi, Yun-hong Ma
{"title":"Autoregressive Spectrum Hole Prediction Model for Cognitive Radio Systems","authors":"Zhigang Wen, T. Luo, Weidong Xiang, S. Majhi, Yun-hong Ma","doi":"10.1109/ICCW.2008.34","DOIUrl":null,"url":null,"abstract":"In this paper, an autoregressive channel prediction model is presented for cognitive radio(CR) systems to estimate spectrum holes. This model adopts a second-order autoregressive process and a Kalman filter. A Bayes risk criterion for spectrum hole detection is presented by considering interference temperature and channel idle probability. Theoretical analysis and simulations show that CR systems based on this scheme can greatly reduce the number of collisions between licensed users and rental users.","PeriodicalId":360127,"journal":{"name":"ICC Workshops - 2008 IEEE International Conference on Communications Workshops","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC Workshops - 2008 IEEE International Conference on Communications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2008.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

In this paper, an autoregressive channel prediction model is presented for cognitive radio(CR) systems to estimate spectrum holes. This model adopts a second-order autoregressive process and a Kalman filter. A Bayes risk criterion for spectrum hole detection is presented by considering interference temperature and channel idle probability. Theoretical analysis and simulations show that CR systems based on this scheme can greatly reduce the number of collisions between licensed users and rental users.
认知无线电系统的自回归频谱空洞预测模型
提出了一种自回归信道预测模型,用于认知无线电(CR)系统的频谱空洞估计。该模型采用二阶自回归过程和卡尔曼滤波。提出了一种考虑干扰温度和信道空闲概率的光谱空穴检测贝叶斯风险准则。理论分析和仿真结果表明,基于该方案的CR系统可以大大减少许可用户与租赁用户之间的冲突次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信