Particle Complexity of Universal Finite Number-Conserving Cellular Automata

A. Alhazov, Katsunobu Imai
{"title":"Particle Complexity of Universal Finite Number-Conserving Cellular Automata","authors":"A. Alhazov, Katsunobu Imai","doi":"10.1109/CANDAR.2016.0045","DOIUrl":null,"url":null,"abstract":"A number-conserving cellular automaton (NCCA) is a cellular automaton whose states are integers and whose transition function keeps the sum of all cells constant throughout its evolution. It can be seen as a kind of particle-based modeling of the physical conservation law of mass. In this paper we focus on the case we call finite NCCA when states are non-negative integers, and the total sum is finite. In spite of the strong constraint, we constructed a radius 1 universal FNCCA by simulating register machines with two registers. We also consider the particle complexity in the case of large (but finite) radius, and constructed a universal FNCCA with only five particles.","PeriodicalId":322499,"journal":{"name":"2016 Fourth International Symposium on Computing and Networking (CANDAR)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Symposium on Computing and Networking (CANDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDAR.2016.0045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A number-conserving cellular automaton (NCCA) is a cellular automaton whose states are integers and whose transition function keeps the sum of all cells constant throughout its evolution. It can be seen as a kind of particle-based modeling of the physical conservation law of mass. In this paper we focus on the case we call finite NCCA when states are non-negative integers, and the total sum is finite. In spite of the strong constraint, we constructed a radius 1 universal FNCCA by simulating register machines with two registers. We also consider the particle complexity in the case of large (but finite) radius, and constructed a universal FNCCA with only five particles.
通用有限守恒元胞自动机的粒子复杂度
保数元胞自动机(NCCA)是一种状态为整数的元胞自动机,其过渡函数在其进化过程中保持所有细胞的总和不变。它可以看作是一种基于粒子的质量物理守恒定律的模型。本文研究了状态为非负整数且总和有限时的有限NCCA情况。尽管存在较强的约束条件,我们还是通过模拟具有两个寄存器的寄存器机构造了一个半径为1的通用FNCCA。我们还考虑了大(但有限)半径情况下粒子的复杂性,并构造了一个只有5个粒子的通用FNCCA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信