Some identities for generalized Chebyshev polynomials

V. Borzov, E. Damaskinsky
{"title":"Some identities for generalized Chebyshev polynomials","authors":"V. Borzov, E. Damaskinsky","doi":"10.1109/DD46733.2019.9016605","DOIUrl":null,"url":null,"abstract":"We consider special linear combinations of classical Chebyshev polynomials (of the 2nd kind) generating a class of polynomials related to “local perturbations” of the coefficients of the discrete Schrödinger equation. These polynomials are called the generalized Chebyshev polynomials. Namely, we find an explicit expression of the coefficients of this linear combination (connection coefficients) using the coefficients of the recurrence relations defining generalized Chebyshev polynomials. This report is a continuation of authors’ work [1].","PeriodicalId":319575,"journal":{"name":"2019 Days on Diffraction (DD)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD46733.2019.9016605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider special linear combinations of classical Chebyshev polynomials (of the 2nd kind) generating a class of polynomials related to “local perturbations” of the coefficients of the discrete Schrödinger equation. These polynomials are called the generalized Chebyshev polynomials. Namely, we find an explicit expression of the coefficients of this linear combination (connection coefficients) using the coefficients of the recurrence relations defining generalized Chebyshev polynomials. This report is a continuation of authors’ work [1].
广义Chebyshev多项式的一些恒等式
我们考虑经典切比雪夫多项式(第二类)的特殊线性组合,生成一类与离散Schrödinger方程系数的“局部摄动”相关的多项式。这些多项式称为广义切比雪夫多项式。也就是说,我们用定义广义切比雪夫多项式的递归关系的系数找到这个线性组合的系数(连接系数)的显式表达式。本报告是作者工作的延续[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信