{"title":"Dynamical Dorfman Testing with Quarantine","authors":"Mustafa Doger, S. Ulukus","doi":"10.1109/CISS53076.2022.9751175","DOIUrl":null,"url":null,"abstract":"We consider dynamical group testing problem with a community structure. With a discrete-time SIR (susceptible, infectious, recovered) model, we use Dorfman's two-step group testing approach to identify infections, and step in whenever necessary to inhibit infection spread via quarantines. We analyze the trade-off between quarantine and test costs as well as disease spread. For the special dynamical i.i.d. model, we show that the optimal first stage Dorfman group size differs in dynamic and static cases. We compare the performance of the proposed dynamic two-stage Dorfman testing with state-of-the-art non-adaptive group testing method in dynamic settings.","PeriodicalId":305918,"journal":{"name":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS53076.2022.9751175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We consider dynamical group testing problem with a community structure. With a discrete-time SIR (susceptible, infectious, recovered) model, we use Dorfman's two-step group testing approach to identify infections, and step in whenever necessary to inhibit infection spread via quarantines. We analyze the trade-off between quarantine and test costs as well as disease spread. For the special dynamical i.i.d. model, we show that the optimal first stage Dorfman group size differs in dynamic and static cases. We compare the performance of the proposed dynamic two-stage Dorfman testing with state-of-the-art non-adaptive group testing method in dynamic settings.