Multiple-Precision Summation on Hybrid CPU-GPU Platforms Using RNS-based Floating-Point Representation

K. Isupov, A. Kuvaev
{"title":"Multiple-Precision Summation on Hybrid CPU-GPU Platforms Using RNS-based Floating-Point Representation","authors":"K. Isupov, A. Kuvaev","doi":"10.1109/EnT-MIPT.2018.00042","DOIUrl":null,"url":null,"abstract":"We consider the summation of large sets of floating-point numbers on hybrid CPU-GPU platforms using MPRES, a new software library for multiple-precision computations on CPUs and CUDA compatible GPUs. This library uses an RNSbased floating-point representation, in accordance with which the multiple-precision significands are represented in a residue number system (RNS). This representation allows the computation of digits (residues) of significands in a parallel way and without carry propagation delay. We present the addition algorithm for RNS-based representations, as well as three multiple-precision summation algorithms: recursive summation, pairwise summation, and block-parallel hybrid summation. The hybrid algorithm demonstrates better performance, as it allows the full utilization of the GPU's resources.","PeriodicalId":131975,"journal":{"name":"2018 Engineering and Telecommunication (EnT-MIPT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Engineering and Telecommunication (EnT-MIPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EnT-MIPT.2018.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the summation of large sets of floating-point numbers on hybrid CPU-GPU platforms using MPRES, a new software library for multiple-precision computations on CPUs and CUDA compatible GPUs. This library uses an RNSbased floating-point representation, in accordance with which the multiple-precision significands are represented in a residue number system (RNS). This representation allows the computation of digits (residues) of significands in a parallel way and without carry propagation delay. We present the addition algorithm for RNS-based representations, as well as three multiple-precision summation algorithms: recursive summation, pairwise summation, and block-parallel hybrid summation. The hybrid algorithm demonstrates better performance, as it allows the full utilization of the GPU's resources.
基于rns浮点表示的CPU-GPU混合平台多精度求和
我们考虑在CPU-GPU混合平台上使用MPRES(一种用于cpu和CUDA兼容gpu上的多精度计算的新软件库)对大型浮点数集进行求和。该库使用基于RNS的浮点表示法,根据该表示法,多精度有效位数在剩余数系统(RNS)中表示。这种表示允许以并行方式计算有效位数(残数),并且没有进位传播延迟。我们提出了基于神经网络表示的加法算法,以及三种多精度求和算法:递归求和、成对求和和块并行混合求和。混合算法表现出更好的性能,因为它可以充分利用GPU的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信