WildFish

Peiqin Zhuang, Yali Wang, Yu Qiao
{"title":"WildFish","authors":"Peiqin Zhuang, Yali Wang, Yu Qiao","doi":"10.1145/3240508.3240616","DOIUrl":null,"url":null,"abstract":"Fish recognition is an important task to understand the marine ecosystem and biodiversity. It is often challenging to identify fish species in the wild, due to the following difficulties. First, most fish benchmarks are small-scale, which may limit the representation power of machine learning models. Second, the number of fish species is huge, and there may still exist unknown categories in our planet. The traditional classifiers often fail to deal with this open-set scenario. Third, certain fish species are highly-confused. It is often hard to figure out the subtle differences, only by the unconstrained images. Motivated by these facts, we introduce a large-scale WildFish benchmark for fish recognition in the wild. Specifically, we make three contributions in this paper. First, WildFish is the largest image data set for wild fish recognition, to our best knowledge. It consists of 1000 fish categories with 54,459 unconstrained images, allowing to train high-capacity models for automatic fish classification. Second, we propose a novel open-set fish classification task for realistic scenarios, and investigate the open-set deep learning framework with a number of practical designs. Third, we propose a novel fine-grained recognition task, with the guidance of pairwise textual descriptions. Via leveraging the comparison knowledge in the sentence, we design a multi-modal fish net to effectively distinguish two confused categories in a pair. Finally, we release WildFish (https://github.com/PeiqinZhuang/WildFish), in order to bring benefit to more research studies in multimedia and beyond.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Fish recognition is an important task to understand the marine ecosystem and biodiversity. It is often challenging to identify fish species in the wild, due to the following difficulties. First, most fish benchmarks are small-scale, which may limit the representation power of machine learning models. Second, the number of fish species is huge, and there may still exist unknown categories in our planet. The traditional classifiers often fail to deal with this open-set scenario. Third, certain fish species are highly-confused. It is often hard to figure out the subtle differences, only by the unconstrained images. Motivated by these facts, we introduce a large-scale WildFish benchmark for fish recognition in the wild. Specifically, we make three contributions in this paper. First, WildFish is the largest image data set for wild fish recognition, to our best knowledge. It consists of 1000 fish categories with 54,459 unconstrained images, allowing to train high-capacity models for automatic fish classification. Second, we propose a novel open-set fish classification task for realistic scenarios, and investigate the open-set deep learning framework with a number of practical designs. Third, we propose a novel fine-grained recognition task, with the guidance of pairwise textual descriptions. Via leveraging the comparison knowledge in the sentence, we design a multi-modal fish net to effectively distinguish two confused categories in a pair. Finally, we release WildFish (https://github.com/PeiqinZhuang/WildFish), in order to bring benefit to more research studies in multimedia and beyond.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信