Evolving deep unsupervised convolutional networks for vision-based reinforcement learning

J. Koutník, J. Schmidhuber, F. Gomez
{"title":"Evolving deep unsupervised convolutional networks for vision-based reinforcement learning","authors":"J. Koutník, J. Schmidhuber, F. Gomez","doi":"10.1145/2576768.2598358","DOIUrl":null,"url":null,"abstract":"Dealing with high-dimensional input spaces, like visual input, is a challenging task for reinforcement learning (RL). Neuroevolution (NE), used for continuous RL problems, has to either reduce the problem dimensionality by (1) compressing the representation of the neural network controllers or (2) employing a pre-processor (compressor) that transforms the high-dimensional raw inputs into low-dimensional features. In this paper, we are able to evolve extremely small recurrent neural network (RNN) controllers for a task that previously required networks with over a million weights. The high-dimensional visual input, which the controller would normally receive, is first transformed into a compact feature vector through a deep, max-pooling convolutional neural network (MPCNN). Both the MPCNN preprocessor and the RNN controller are evolved successfully to control a car in the TORCS racing simulator using only visual input. This is the first use of deep learning in the context evolutionary RL.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 113

Abstract

Dealing with high-dimensional input spaces, like visual input, is a challenging task for reinforcement learning (RL). Neuroevolution (NE), used for continuous RL problems, has to either reduce the problem dimensionality by (1) compressing the representation of the neural network controllers or (2) employing a pre-processor (compressor) that transforms the high-dimensional raw inputs into low-dimensional features. In this paper, we are able to evolve extremely small recurrent neural network (RNN) controllers for a task that previously required networks with over a million weights. The high-dimensional visual input, which the controller would normally receive, is first transformed into a compact feature vector through a deep, max-pooling convolutional neural network (MPCNN). Both the MPCNN preprocessor and the RNN controller are evolved successfully to control a car in the TORCS racing simulator using only visual input. This is the first use of deep learning in the context evolutionary RL.
基于视觉强化学习的深度无监督卷积网络的进化
处理高维输入空间,如视觉输入,是强化学习(RL)的一个具有挑战性的任务。用于连续RL问题的神经进化(NE)必须通过(1)压缩神经网络控制器的表示或(2)使用将高维原始输入转换为低维特征的预处理器(压缩器)来降低问题维度。在本文中,我们能够为以前需要超过一百万个权重的网络的任务进化极小的递归神经网络(RNN)控制器。控制器通常接收的高维视觉输入首先通过深度、最大池化卷积神经网络(MPCNN)转换为紧凑的特征向量。MPCNN预处理器和RNN控制器都成功地实现了TORCS赛车模拟器中仅使用视觉输入的汽车控制。这是深度学习在进化强化学习中的首次应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信