An FPTAS for #Knapsack and Related Counting Problems

Parikshit Gopalan, Adam R. Klivans, R. Meka, Daniel Stefankovic, S. Vempala, Eric Vigoda
{"title":"An FPTAS for #Knapsack and Related Counting Problems","authors":"Parikshit Gopalan, Adam R. Klivans, R. Meka, Daniel Stefankovic, S. Vempala, Eric Vigoda","doi":"10.1109/FOCS.2011.32","DOIUrl":null,"url":null,"abstract":"Given $n$ elements with non-negative integer weights $w_1,..., w_n$ and an integer capacity $C$, we consider the counting version of the classic knapsack problem: find the number of distinct subsets whose weights add up to at most $C$. We give the first deterministic, fully polynomial-time approximation scheme (FPTAS) for estimating the number of solutions to any knapsack constraint (our estimate has relative error $1 \\pm \\epsilon$). Our algorithm is based on dynamic programming. Previously, randomized polynomial-time approximation schemes (FPRAS) were known first by Morris and Sinclair via Markov chain Monte Carlo techniques, and subsequently by Dyer via dynamic programming and rejection sampling. In addition, we present a new method for deterministic approximate counting using {\\em read-once branching programs.} Our approach yields an FPTAS for several other counting problems, including counting solutions for the multidimensional knapsack problem with a constant number of constraints, the general integer knapsack problem, and the contingency tables problem with a constant number of rows.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Given $n$ elements with non-negative integer weights $w_1,..., w_n$ and an integer capacity $C$, we consider the counting version of the classic knapsack problem: find the number of distinct subsets whose weights add up to at most $C$. We give the first deterministic, fully polynomial-time approximation scheme (FPTAS) for estimating the number of solutions to any knapsack constraint (our estimate has relative error $1 \pm \epsilon$). Our algorithm is based on dynamic programming. Previously, randomized polynomial-time approximation schemes (FPRAS) were known first by Morris and Sinclair via Markov chain Monte Carlo techniques, and subsequently by Dyer via dynamic programming and rejection sampling. In addition, we present a new method for deterministic approximate counting using {\em read-once branching programs.} Our approach yields an FPTAS for several other counting problems, including counting solutions for the multidimensional knapsack problem with a constant number of constraints, the general integer knapsack problem, and the contingency tables problem with a constant number of rows.
关于# backpack和相关计数问题的FPTAS
给定$n$个非负整数权重$w_1,…, w_n$和一个整数容量$C$时,我们考虑经典背包问题的计数版本:找出其权重之和不超过$C$的不同子集的个数。我们给出了第一个确定性的,完全多项式时间近似方案(FPTAS),用于估计任何背包约束的解的数量(我们的估计具有相对误差$1 \pm \epsilon$)。我们的算法基于动态规划。在此之前,随机多项式时间近似格式(FPRAS)首先由Morris和Sinclair通过马尔可夫链蒙特卡罗技术发现,随后由Dyer通过动态规划和拒绝抽样方法发现。此外,我们提出了一种利用{\em读一次分支程序进行确定性近似计数的新方法。我们的方法为其他几个计数问题产生了FPTAS,包括具有常数个数约束的多维背包问题的计数解决方案,一般整数背包问题,以及具有常数行数的联列表问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信