Ultradiscrete bifurcations for one dimensional dynamical systems

S. Ohmori, Y. Yamazaki
{"title":"Ultradiscrete bifurcations for one dimensional dynamical systems","authors":"S. Ohmori, Y. Yamazaki","doi":"10.1063/5.0012772","DOIUrl":null,"url":null,"abstract":"Bifurcations of one dimensional dynamical systems are discussed based on some ultradiscretized equations.The ultradiscrete equations are derived from the normal forms of one-dimensional nonlinear differential equations,each of which has saddle-node,transcritical,or pitchfork bifurcations. An additional bifurcation, which is similar to flip bifurcation,is also discussed. Dynamical properties of these ultradiscrete bifurcations can be characterized with graphical analysis. As an example of application of our treatment, we focus on an ultradiscrete equation of FitzHugh-Nagumo model, and discuss its dynamical properties.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0012772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Bifurcations of one dimensional dynamical systems are discussed based on some ultradiscretized equations.The ultradiscrete equations are derived from the normal forms of one-dimensional nonlinear differential equations,each of which has saddle-node,transcritical,or pitchfork bifurcations. An additional bifurcation, which is similar to flip bifurcation,is also discussed. Dynamical properties of these ultradiscrete bifurcations can be characterized with graphical analysis. As an example of application of our treatment, we focus on an ultradiscrete equation of FitzHugh-Nagumo model, and discuss its dynamical properties.
一维动力系统的超离散分岔
讨论了基于超离散方程的一维动力系统的分岔问题。超离散方程是由一维非线性微分方程的正规形式导出的,其中每个方程都有鞍节点分岔、跨临界分岔或干草叉分岔。本文还讨论了一种类似于翻转分岔的附加分岔。这些超离散分岔的动力学性质可以用图形分析来表征。作为我们处理方法的一个应用实例,我们重点讨论了FitzHugh-Nagumo模型的一个超离散方程,并讨论了它的动力学性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信