AraBERT Model for Propaganda Detection

Mohamad Sharara, Wissam Mohamad, Ralph Tawil, Ralph Chobok, Wolf Assi, Antonio Tannoury
{"title":"AraBERT Model for Propaganda Detection","authors":"Mohamad Sharara, Wissam Mohamad, Ralph Tawil, Ralph Chobok, Wolf Assi, Antonio Tannoury","doi":"10.18653/v1/2022.wanlp-1.61","DOIUrl":null,"url":null,"abstract":"Nowadays, the rapid dissemination of data on digital platforms has resulted in the emergence of information pollution and data contamination, specifically mis-information, mal-information, dis-information, fake news, and various types of propaganda. These topics are now posing a serious threat to the online digital realm, posing numerous challenges to social media platforms and governments around the world. In this article, we propose a propaganda detection model based on the transformer-based model AraBERT, with the objective of using this framework to detect propagandistic content in the Arabic social media text scene, well with purpose of making online Arabic news and media consumption healthier and safer. Given the dataset, our results are relatively encouraging, indicating a huge potential for this line of approaches in Arabic online news text NLP.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the rapid dissemination of data on digital platforms has resulted in the emergence of information pollution and data contamination, specifically mis-information, mal-information, dis-information, fake news, and various types of propaganda. These topics are now posing a serious threat to the online digital realm, posing numerous challenges to social media platforms and governments around the world. In this article, we propose a propaganda detection model based on the transformer-based model AraBERT, with the objective of using this framework to detect propagandistic content in the Arabic social media text scene, well with purpose of making online Arabic news and media consumption healthier and safer. Given the dataset, our results are relatively encouraging, indicating a huge potential for this line of approaches in Arabic online news text NLP.
用于宣传检测的AraBERT模型
如今,数据在数字平台上的快速传播,导致了信息污染和数据污染的出现,特别是错误信息、错误信息、虚假信息、假新闻和各种宣传。这些话题现在对在线数字领域构成了严重威胁,对世界各地的社交媒体平台和政府构成了无数挑战。在本文中,我们提出了一个基于转换器模型AraBERT的宣传检测模型,目的是使用该框架来检测阿拉伯社交媒体文本场景中的宣传内容,从而使在线阿拉伯新闻和媒体消费更健康、更安全。考虑到数据集,我们的结果相对令人鼓舞,表明这一系列方法在阿拉伯语在线新闻文本NLP中具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信