Voltage transients measurements and power line communication

M. Ahonen, T. Koppel
{"title":"Voltage transients measurements and power line communication","authors":"M. Ahonen, T. Koppel","doi":"10.1109/RTUCON.2016.7763143","DOIUrl":null,"url":null,"abstract":"Power line communication (PLC) connects energy producers with energy consumers. In the European Union stricter guidelines are under development to limit disturbances in the 2-150 kHz frequency range, because devices utilising PLC do not work. This study measured voltage transients in 22 locations and identified sources for noise. Home environments and public buildings were measured. Measurements were conducted in the frequency range of 150 kHz-500 kHz (according to EN 55011 to EN 55022) and in the lower frequency range of 3 kHz to 95 kHz. Results indicate that voltage transients are generated mostly by switching mode power supplies, pumps, rectifiers, inverters and even low quality smart meters. Several of these devices exceeded PLC standard level, 122 dBμV. Additionally we demonstrate that basic power quality recordings do not provide enough information to mitigate PLC problems occurring within microseconds and frequency specific voltage transient measurements are needed.","PeriodicalId":102691,"journal":{"name":"2016 57th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 57th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUCON.2016.7763143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Power line communication (PLC) connects energy producers with energy consumers. In the European Union stricter guidelines are under development to limit disturbances in the 2-150 kHz frequency range, because devices utilising PLC do not work. This study measured voltage transients in 22 locations and identified sources for noise. Home environments and public buildings were measured. Measurements were conducted in the frequency range of 150 kHz-500 kHz (according to EN 55011 to EN 55022) and in the lower frequency range of 3 kHz to 95 kHz. Results indicate that voltage transients are generated mostly by switching mode power supplies, pumps, rectifiers, inverters and even low quality smart meters. Several of these devices exceeded PLC standard level, 122 dBμV. Additionally we demonstrate that basic power quality recordings do not provide enough information to mitigate PLC problems occurring within microseconds and frequency specific voltage transient measurements are needed.
电压瞬态测量和电力线通信
电力线通信(PLC)连接能源生产者和能源消费者。在欧盟,正在制定更严格的指导方针,以限制2-150 kHz频率范围内的干扰,因为使用PLC的设备不起作用。这项研究测量了22个地点的电压瞬变,并确定了噪声源。对家庭环境和公共建筑进行了测量。测量的频率范围为150 kHz-500 kHz(根据EN 55011至EN 55022),频率范围为3 kHz至95 kHz。结果表明,电压瞬变主要由开关电源、泵、整流器、逆变器甚至低质量的智能电表产生。这些设备中有几个超过了PLC标准水平,122 dBμV。此外,我们证明,基本的电能质量记录不能提供足够的信息,以减轻在微秒内发生的PLC问题,需要特定频率的电压瞬态测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信