Model of Sentiment Analysis with Deep Learning in Social Network Environment

Putra Wanda, Huang Jinjie
{"title":"Model of Sentiment Analysis with Deep Learning in Social Network Environment","authors":"Putra Wanda, Huang Jinjie","doi":"10.1109/ICEICT.2019.8846362","DOIUrl":null,"url":null,"abstract":"Currently, the digital environment such as social network needs real-time and adaptive security model. Deep learning is becoming increasingly popular for various applications. In this research, we proposed a Dynamic Deep Learning algorithm, dubbed Dynamic Convolutional Neural Networks (CNN). Different from common CNN, it assigns similar signal parts to the same CNN channel and solves signal alignment. Therefore, it can better deal with the problem of data noise, alignment, and other data variations. We achieve an increase in CNN graph’s performance with dynamic k-max pooling model with a benchmark dataset for sentiment analysis.","PeriodicalId":382686,"journal":{"name":"2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT.2019.8846362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Currently, the digital environment such as social network needs real-time and adaptive security model. Deep learning is becoming increasingly popular for various applications. In this research, we proposed a Dynamic Deep Learning algorithm, dubbed Dynamic Convolutional Neural Networks (CNN). Different from common CNN, it assigns similar signal parts to the same CNN channel and solves signal alignment. Therefore, it can better deal with the problem of data noise, alignment, and other data variations. We achieve an increase in CNN graph’s performance with dynamic k-max pooling model with a benchmark dataset for sentiment analysis.
社交网络环境下深度学习情感分析模型
当前,社交网络等数字环境需要实时、自适应的安全模型。深度学习在各种应用中越来越受欢迎。在这项研究中,我们提出了一种动态深度学习算法,称为动态卷积神经网络(CNN)。与普通CNN不同的是,它将相似的信号部分分配给同一个CNN通道,解决了信号对齐问题。因此,它可以更好地处理数据噪声、对齐和其他数据变化问题。我们使用动态k-max池化模型和一个用于情感分析的基准数据集来提高CNN图的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信