State generalization method based on uncertainty minimization of behavior outcomes for reactive agents

T. Yairi, K. Hori, S. Nakasuka
{"title":"State generalization method based on uncertainty minimization of behavior outcomes for reactive agents","authors":"T. Yairi, K. Hori, S. Nakasuka","doi":"10.1109/ICCIMA.1999.798522","DOIUrl":null,"url":null,"abstract":"Autonomous state generalization is one of the key issues in the behavior acquisition problem of reactive agents. The paper proposes a novel state generalization method which discretizes the continuous sensor space based on entropy minimization of agents' behavior outcomes. This general framework unifies the heuristic criteria for state generalization used in conventional works. An experimental study in the latter part suggests that our method increases the adaptability of agents to the environment and improves the overall behavior performance.","PeriodicalId":110736,"journal":{"name":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.1999.798522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous state generalization is one of the key issues in the behavior acquisition problem of reactive agents. The paper proposes a novel state generalization method which discretizes the continuous sensor space based on entropy minimization of agents' behavior outcomes. This general framework unifies the heuristic criteria for state generalization used in conventional works. An experimental study in the latter part suggests that our method increases the adaptability of agents to the environment and improves the overall behavior performance.
基于不确定性最小化反应体行为结果的状态概化方法
自主状态概化是反应体行为习得问题中的关键问题之一。提出了一种基于智能体行为结果熵最小化的连续传感器空间离散化的状态概化方法。这个通用框架统一了传统工作中状态概化的启发式准则。后一部分的实验研究表明,我们的方法提高了智能体对环境的适应性,提高了整体的行为性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信