Feynman Integral Relations from GKZ Hypergeometric Systems

Henrik J. Munch
{"title":"Feynman Integral Relations from GKZ Hypergeometric Systems","authors":"Henrik J. Munch","doi":"10.22323/1.416.0042","DOIUrl":null,"url":null,"abstract":"We study Feynman integrals in the framework of Gel'fand-Kapranov-Zelevinsky (GKZ) hypergeometric systems. The latter defines a class of functions wherein Feynman integrals arise as special cases, for any number of loops and kinematic scales. Utilizing the GKZ system and its relation to $D$-module theory, we propose a novel method for obtaining differential equations for master integrals. This note is based on the longer manuscript arXiv:2204.12983.","PeriodicalId":151433,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.416.0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study Feynman integrals in the framework of Gel'fand-Kapranov-Zelevinsky (GKZ) hypergeometric systems. The latter defines a class of functions wherein Feynman integrals arise as special cases, for any number of loops and kinematic scales. Utilizing the GKZ system and its relation to $D$-module theory, we propose a novel method for obtaining differential equations for master integrals. This note is based on the longer manuscript arXiv:2204.12983.
GKZ超几何系统中的Feynman积分关系
本文研究了Gel'fand-Kapranov-Zelevinsky (GKZ)超几何系统框架下的Feynman积分。后者定义了一类函数,其中费曼积分作为特殊情况出现,对于任何数量的环路和运动尺度。利用GKZ系统及其与D模理论的关系,提出了一种求主积分微分方程的新方法。这个说明是基于较长的手稿arXiv:2204.12983。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信