Gas load forecasting model input factor identification using a genetic algorithm

Hui Li. Lim, R. Brown
{"title":"Gas load forecasting model input factor identification using a genetic algorithm","authors":"Hui Li. Lim, R. Brown","doi":"10.1109/MWSCAS.2001.986277","DOIUrl":null,"url":null,"abstract":"Genetic algorithms (GAs) are used as a tool to identify the input factors for an hourly gas load forecasting model. The proposed model can provide up to 106 hours of load forecasts. Experiences obtained during the application of GA for determination of inputs are discussed. Linear regression based models using the results of this study had an average error 23% less than the existing method at one gas utility over six service areas.","PeriodicalId":403026,"journal":{"name":"Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2001.986277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Genetic algorithms (GAs) are used as a tool to identify the input factors for an hourly gas load forecasting model. The proposed model can provide up to 106 hours of load forecasts. Experiences obtained during the application of GA for determination of inputs are discussed. Linear regression based models using the results of this study had an average error 23% less than the existing method at one gas utility over six service areas.
燃气负荷预测模型输入因子的遗传算法识别
遗传算法(GAs)被用作一种工具来识别每小时燃气负荷预测模型的输入因素。所提出的模型可以提供长达106小时的负荷预测。讨论了应用遗传算法确定输入的经验。使用该研究结果的基于线性回归的模型在一个天然气公用事业公司六个服务区域的平均误差比现有方法小23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信