Performance Analysis of Chinese Webpage Categorizing Algorithm Based on Support Vector Machines (SVM)

Xiao Gang, Jiancang Xie
{"title":"Performance Analysis of Chinese Webpage Categorizing Algorithm Based on Support Vector Machines (SVM)","authors":"Xiao Gang, Jiancang Xie","doi":"10.1109/IAS.2009.316","DOIUrl":null,"url":null,"abstract":"Categorizing web automatically for users is a key technique of information society, and the key point of this technique is web training and categorization. This paper researches one of the important algorithm in this field—support vector machines (SVM). By analyzing and simulating 4 kinds of kernel function and 3 ways of feature selection, polynomial kernel function and document frequency is chosen for the best way in SVM algorithm. Meanwhile, pre-process algorithm is given in this paper in order to improve the efficiency of categorization. By simulation, importing pre-process method to SVM enhances the capability of the web categorization both in precision and time-consumption.","PeriodicalId":240354,"journal":{"name":"2009 Fifth International Conference on Information Assurance and Security","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Information Assurance and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2009.316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Categorizing web automatically for users is a key technique of information society, and the key point of this technique is web training and categorization. This paper researches one of the important algorithm in this field—support vector machines (SVM). By analyzing and simulating 4 kinds of kernel function and 3 ways of feature selection, polynomial kernel function and document frequency is chosen for the best way in SVM algorithm. Meanwhile, pre-process algorithm is given in this paper in order to improve the efficiency of categorization. By simulation, importing pre-process method to SVM enhances the capability of the web categorization both in precision and time-consumption.
基于支持向量机的中文网页分类算法性能分析
面向用户的网页自动分类是信息社会的一项关键技术,而该技术的关键是网页训练和分类。本文研究了其中一种重要的场支持向量机算法。通过对4种核函数和3种特征选择方法的分析和仿真,选择多项式核函数和文档频率作为SVM算法的最佳方法。同时,为了提高分类效率,本文给出了预处理算法。仿真结果表明,在支持向量机中引入预处理方法可以提高web分类的精度和耗时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信